Jump to content

Bis-GMA

From Wikipedia, the free encyclopedia
Bis-GMA
Names
Preferred IUPAC name
Propane-2,2-diylbis[4,1-phenyleneoxy(2-hydroxypropane-3,1-diyl)] bis(2-methylprop-2-enoate)
Other names
Bowen monomer; Silux; Delton; NuvaSeal; Retroplast
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.014.880 Edit this at Wikidata
EC Number
  • 216-367-7
UNII
  • InChI=1S/C29H36O8/c1-19(2)27(32)36-17-23(30)15-34-25-11-7-21(8-12-25)29(5,6)22-9-13-26(14-10-22)35-16-24(31)18-37-28(33)20(3)4/h7-14,23-24,30-31H,1,3,15-18H2,2,4-6H3
    Key: AMFGWXWBFGVCKG-UHFFFAOYSA-N
  • CC(=C)C(=O)OCC(COC1=CC=C(C=C1)C(C)(C)C2=CC=C(C=C2)OCC(COC(=O)C(=C)C)O)O
Properties
C29H36O8
Molar mass 512.599 g·mol−1
Appearance colorless oil
Hazards
GHS labelling:
GHS05: CorrosiveGHS07: Exclamation mark
Danger
H315, H317, H318, H319
P261, P264, P272, P280, P302 P352, P305 P351 P338, P310, P321, P332 P313, P333 P313, P337 P313, P362, P363, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Bis-GMA (bisphenol A-glycidyl methacrylate) is a resin commonly used in dental composite, dental sealants.[1][2] and dental cement. It is the diester derived from methacrylic acid and the bisphenol A diglycidyl ether. Bearing two polymerizable groups, it is prone to form a crosslinked polymer that is used in dental restorations.[3] For dental work, highly viscous bis-GMA is mixed with aluminosilicate particles, crushed quartz and other related acrylates; changes to component ratios lead to different physical properties in the end product.[4] Bis-GMA was incorporated into composite dental resins in 1962 by Rafael Bowen.[3] Until matrix development work in the early 2000s, bis-GMA and related methacrylate monomers were the only options for organic matrix composition.[5]

Safety

[edit]

Concerns have been raised about the potential for bis-GMA to break down into or be contaminated with the related compound bisphenol A.[6] However, no negative health effects of bis-GMA use in dental resins have been found.[2][7]

Composition

[edit]

Salivary esterases can slowly degrade bis-GMA-based sealants, forming Bis-HPPP.[8]

References

[edit]
  1. ^ CID 15284 from PubChem. Retrieved 27 May 2022.
  2. ^ a b Ahovuo-Saloranta, Anneli; Forss, Helena; Walsh, Tanya; Nordblad, Anne; Mäkelä, Marjukka; Worthington, Helen V. (31 July 2017). "Pit and fissure sealants for preventing dental decay in permanent teeth". The Cochrane Database of Systematic Reviews. 2017 (7): CD001830. doi:10.1002/14651858.CD001830.pub5. ISSN 1469-493X. PMC 6483295. PMID 28759120.
  3. ^ a b Craig RG, Welker D, Rothaut J, Krumbholz KG, Stefan KP, Dermann K, Rehberg HJ, Franz G, Lehmann KM, Borchert M (2006). "Dental Materials". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a08_251.pub2. ISBN 978-3527306732.
  4. ^ Zimmerli B, Strub M, Jeger F, Stadler O, Lussi A (November 2010). "Composite Materials: Composition, properties and clinical applications" (PDF). Schweiz Monatsschr Zahnmed. 120 (11): 972–9. PMID 21243545. Retrieved 28 May 2022.
  5. ^ Fugolin AP, Pfeifer CS (21 July 2017). "New Resins for Dental Composites". Journal of Dental Research. 96 (10): 1085–91. doi:10.1177/0022034517720658. PMC 5582688. PMID 28732183.
  6. ^ LaBauve JR, Long KN, Hack GD, Bashirelahi N (2012). "What every dentist should known about bisphenol A". General Dentistry. 60 (5): 424–32. PMID 23032231.
  7. ^ Soderholm KJ, Mariotti A (February 1999). "Bis-GMA–based resins in dentistry: are they safe?". The Journal of the American Dental Association. 130 (2): 201–209. doi:10.14219/jada.archive.1999.0169. PMID 10036843.(subscription required)
  8. ^ Shokati, Babak; Tam, Laura Eva; Santerre, J. Paul; Finer, Yoav (2010). "Effect of salivary esterase on the integrity and fracture toughness of the dentin-resin interface". Journal of Biomedical Materials Research Part B: Applied Biomaterials. 94 (1): 230–7. doi:10.1002/jbm.b.31645. PMID 20524199.

Further reading

[edit]