Zirconocene dichloride is an organozirconium compound composed of a zirconium central atom, with two cyclopentadienyl and two chloro ligands. It is a colourless diamagnetic solid that is somewhat stable in air.
| |||
Identifiers | |||
---|---|---|---|
3D model (JSmol)
|
|||
ChemSpider | |||
ECHA InfoCard | 100.013.697 | ||
PubChem CID
|
|||
UNII | |||
CompTox Dashboard (EPA)
|
|||
| |||
| |||
Properties | |||
C10H10Cl2Zr | |||
Molar mass | 292.31 g·mol−1 | ||
Appearance | white solid | ||
Soluble (Hydrolysis) | |||
Hazards | |||
Safety data sheet (SDS) | CAMEO Chemicals MSDS | ||
Related compounds | |||
Related compounds
|
Titanocene dichloride Hafnocene dichloride Vanadocene dichloride Niobocene dichloride Tantalocene dichloride Tungstenocene dichloride | ||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Preparation and structure
editZirconocene dichloride may be prepared from zirconium(IV) chloride-tetrahydrofuran complex and sodium cyclopentadienide:
- ZrCl4(THF)2 2 NaCp → Cp2ZrCl2 2 NaCl 2 THF
The closely related compound Cp2ZrBr2 was first described by Birmingham and Wilkinson.[1]
The compound is a bent metallocene: the Cp rings are not parallel, the average Cp(centroid)-M-Cp angle being 128°. The Cl-Zr-Cl angle of 97.1° is wider than in niobocene dichloride (85.6°) and molybdocene dichloride (82°). This trend helped to establish the orientation of the HOMO in this class of complex.[2]
Reactions
editSchwartz's reagent
editZirconocene dichloride reacts with lithium aluminium hydride to give Cp2ZrHCl Schwartz's reagent:
- (C5H5)2ZrCl2 1/4 LiAlH4 → (C5H5)2ZrHCl 1/4 LiAlCl4
Since lithium aluminium hydride is a strong reductant, some over-reduction occurs to give the dihydrido complex, Cp2ZrH2; treatment of the product mixture with methylene chloride converts it to Schwartz's reagent.[3]
Negishi reagent
editZirconocene dichloride can also be used to prepare the Negishi reagent, Cp2Zr(η2-butene), which can be used as a source of Cp2Zr in oxidative cyclisation reactions. The Negishi reagent is prepared by treating zirconocene dichloride with n-BuLi, leading to replacement of the two chloride ligands with butyl groups. The dibutyl compound subsequently undergoes beta-hydride elimination to give one η2-butene ligand, with the other butyl ligand promptly lost as butane via reductive elimination.[4]
Carboalumination
editZirconocene dichloride catalyzes the carboalumination of alkynes by trimethylaluminium to give a (alkenyl)dimethylalane, a versatile intermediate for further cross coupling reactions for the synthesis of stereodefined trisubstituted olefins. For example, α-farnesene can be prepared as a single stereoisomer by carboalumination of 1-buten-3-yne with trimethylaluminium, followed by palladium-catalyzed coupling of the resultant vinylaluminium reagent with geranyl chloride.[5]
The use of trimethylaluminium for this reaction results in exclusive formation of the syn-addition product and, for terminal alkynes, the anti-Markovnikov addition with high selectivity (generally > 10:1). Unfortunately, the use of higher alkylaluminium reagents results in lowered yield, due to the formation of the hydroalumination product (via β-hydrogen elimination of the alkylzirconium intermediate) as side product, and only moderate regioselectivities.[6] Thus, practical applications of the carboalumination reaction are generally confined to the case of methylalumination. Although this is a major limitation, the synthetic utility of this process remains significant, due to the frequent appearance of methyl-substituted alkenes in natural products.
Zr-walk
editZirconocene dichloride together with a reducing reagent can form the zirconocene hydride catalyst in situ, which allows a positional isomerization (so-called "Zr-walk"[7]), and ends up with a cleavage of allylic bonds. Not only individual steps under stoichiometric conditions were described with Schwartz reagent,[8] and Negishi reagent,[9] but also catalytic applications on alkene hydroaluminations,[10] radical cyclisation,[11] polybutadiene cleavage,[12] and reductive removal of functional groups[13] were reported.
References
edit- ^ G. Wilkinson and J. M. Birmingham (1954). "Bis-cyclopentadienyl Compounds of Ti, Zr, V, Nb and Ta". J. Am. Chem. Soc. 76 (17): 4281–4284. doi:10.1021/ja01646a008.4281-4284&rft.date=1954&rft_id=info:doi/10.1021/ja01646a008&rft.au=G. Wilkinson and J. M. Birmingham&rfr_id=info:sid/en.wikipedia.org:Zirconocene dichloride" class="Z3988">
- ^ K. Prout, T. S. Cameron, R. A. Forder, and in parts S. R. Critchley, B. Denton and G. V. Rees "The crystal and molecular structures of bent bis-π-cyclopentadienyl-metal complexes: (a) bis-π-cyclopentadienyldibromorhenium(V) tetrafluoroborate, (b) bis-π-cyclopentadienyldichloromolybdenum(IV), (c) bis-π-cyclopentadienylhydroxomethylaminomolybdenum(IV) hexafluorophosphate, (d) bis-π-cyclopentadienylethylchloromolybdenum(IV), (e) bis-π-cyclopentadienyldichloroniobium(IV), (f) bis-π-cyclopentadienyldichloromolybdenum(V) tetrafluoroborate, (g) μ-oxo-bis[bis-π-cyclopentadienylchloroniobium(IV)] tetrafluoroborate, (h) bis-π-cyclopentadienyldichlorozirconium" Acta Crystallogr. 1974, volume B30, pp. 2290–2304. doi:10.1107/S0567740874007011
- ^ S. L. Buchwald; S. J. LaMaire; R. B.; Nielsen; B. T. Watson; S. M. King. "Schwartz's Reagent". Organic Syntheses; Collected Volumes, vol. 9, p. 162.
- ^ Negishi, E.; Takashi, T. (1994). "Patterns of Stoichiometric and Catalytic Reactions of Organozirconium and Related Complexes of Synthetic Interest". Accounts of Chemical Research. 27 (5): 124–130. doi:10.1021/ar00041a002.124-130&rft.date=1994&rft_id=info:doi/10.1021/ar00041a002&rft.aulast=Negishi&rft.aufirst=E.&rft.au=Takashi, T.&rfr_id=info:sid/en.wikipedia.org:Zirconocene dichloride" class="Z3988">
- ^ "Palladium-Catalyzed Synthesis of 1,4-Dienes by Allylation of Alkenylalanes: α-Farnesene". www.orgsyn.org. Retrieved 2019-11-27.
- ^ Huo, Shouquan (2016-09-19), Rappoport, Zvi (ed.), "Carboalumination Reactions", PATAI'S Chemistry of Functional Groups, Chichester, UK: John Wiley & Sons, Ltd, pp. 1–64, doi:10.1002/9780470682531.pat0834, ISBN 978-0-470-68253-1, retrieved 2021-01-191-64&rft.date=2016-09-19&rft_id=info:doi/10.1002/9780470682531.pat0834&rft.isbn=978-0-470-68253-1&rft.aulast=Huo&rft.aufirst=Shouquan&rft_id=http://doi.wiley.com/10.1002/9780470682531.pat0834&rfr_id=info:sid/en.wikipedia.org:Zirconocene dichloride" class="Z3988">
- ^ Sommer, Heiko; Juliá-Hernández, Francisco; Martin, Ruben; Marek, Ilan (2018-02-08). "Walking Metals for Remote Functionalization". ACS Central Science. 4 (2): 153–165. doi:10.1021/acscentsci.8b00005. ISSN 2374-7943. PMC 5833012. PMID 29532015. S2CID 4389888.153-165&rft.date=2018-02-08&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833012#id-name=PMC&rft_id=https://api.semanticscholar.org/CorpusID:4389888#id-name=S2CID&rft_id=info:doi/10.1021/acscentsci.8b00005&rft.issn=2374-7943&rft_id=info:pmid/29532015&rft.aulast=Sommer&rft.aufirst=Heiko&rft.au=Juliá-Hernández, Francisco&rft.au=Martin, Ruben&rft.au=Marek, Ilan&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833012&rfr_id=info:sid/en.wikipedia.org:Zirconocene dichloride" class="Z3988">
- ^ Cénac, Nathalie; Zablocka, Maria; Igau, Alain; Commenges, Gérard; Majoral, Jean-Pierre; Skowronska, Aleksandra (1996-02-20). "Zirconium-Promoted Ring Opening. Scope and Limitations". Organometallics. 15 (4): 1208–1217. doi:10.1021/om950491 . ISSN 0276-7333.1208-1217&rft.date=1996-02-20&rft_id=info:doi/10.1021/om950491+&rft.issn=0276-7333&rft.aulast=Cénac&rft.aufirst=Nathalie&rft.au=Zablocka, Maria&rft.au=Igau, Alain&rft.au=Commenges, Gérard&rft.au=Majoral, Jean-Pierre&rft.au=Skowronska, Aleksandra&rft_id=http://dx.doi.org/10.1021/om950491+&rfr_id=info:sid/en.wikipedia.org:Zirconocene dichloride" class="Z3988">
- ^ Masarwa, Ahmad; Didier, Dorian; Zabrodski, Tamar; Schinkel, Marvin; Ackermann, Lutz; Marek, Ilan (2013-12-08). "Merging allylic carbon–hydrogen and selective carbon–carbon bond activation". Nature. 505 (7482): 199–203. doi:10.1038/nature12761. ISSN 0028-0836. PMID 24317692. S2CID 205236414.199-203&rft.date=2013-12-08&rft.issn=0028-0836&rft_id=https://api.semanticscholar.org/CorpusID:205236414#id-name=S2CID&rft_id=info:pmid/24317692&rft_id=info:doi/10.1038/nature12761&rft.aulast=Masarwa&rft.aufirst=Ahmad&rft.au=Didier, Dorian&rft.au=Zabrodski, Tamar&rft.au=Schinkel, Marvin&rft.au=Ackermann, Lutz&rft.au=Marek, Ilan&rft_id=http://dx.doi.org/10.1038/nature12761&rfr_id=info:sid/en.wikipedia.org:Zirconocene dichloride" class="Z3988">
- ^ Negishi; Yoshida (1980). "A novel zirconium- catalyzed hydroalumination of olefins". Tetrahedron Lett. 21 (16): 1501–1504. doi:10.1016/S0040-4039(00)92757-6.1501-1504&rft.date=1980&rft_id=info:doi/10.1016/S0040-4039(00)92757-6&rft.au=Negishi&rft.au=Yoshida&rfr_id=info:sid/en.wikipedia.org:Zirconocene dichloride" class="Z3988">
- ^ Fujita; Nakamura; Oshima (2001). "Triethylborane-Induced Radical Reaction with Schwartz Reagent". J. Am. Chem. Soc. 123 (13): 3137–3138. doi:10.1021/ja0032428.3137-3138&rft.date=2001&rft_id=info:doi/10.1021/ja0032428&rft.au=Fujita&rft.au=Nakamura&rft.au=Oshima&rfr_id=info:sid/en.wikipedia.org:Zirconocene dichloride" class="Z3988">
- ^ Zheng, Jun; Lin, Yichao; Liu, Feng; Tan, Haiying; Wang, Yanhui; Tang, Tao (2012-11-08). "Controlled Chain-Scission of Polybutadiene by the Schwartz Hydrozirconation". Chemistry - A European Journal. 19 (2): 541–548. doi:10.1002/chem.201202942. ISSN 0947-6539. PMID 23139199.541-548&rft.date=2012-11-08&rft.issn=0947-6539&rft_id=info:pmid/23139199&rft_id=info:doi/10.1002/chem.201202942&rft.aulast=Zheng&rft.aufirst=Jun&rft.au=Lin, Yichao&rft.au=Liu, Feng&rft.au=Tan, Haiying&rft.au=Wang, Yanhui&rft.au=Tang, Tao&rft_id=http://dx.doi.org/10.1002/chem.201202942&rfr_id=info:sid/en.wikipedia.org:Zirconocene dichloride" class="Z3988">
- ^ Matt, Christof; Kölblin, Frederic; Streuff, Jan (2019-09-06). "Reductive C–O, C–N, and C–S Cleavage by a Zirconium Catalyzed Hydrometalation/β-Elimination Approach". Organic Letters. 21 (17): 6983–6988. doi:10.1021/acs.orglett.9b02572. ISSN 1523-7060. PMID 31403304. S2CID 199539801.6983-6988&rft.date=2019-09-06&rft.issn=1523-7060&rft_id=https://api.semanticscholar.org/CorpusID:199539801#id-name=S2CID&rft_id=info:pmid/31403304&rft_id=info:doi/10.1021/acs.orglett.9b02572&rft.aulast=Matt&rft.aufirst=Christof&rft.au=Kölblin, Frederic&rft.au=Streuff, Jan&rft_id=https://pubs.acs.org/doi/10.1021/acs.orglett.9b02572&rfr_id=info:sid/en.wikipedia.org:Zirconocene dichloride" class="Z3988">
Further reading
edit- A. Maureen Rouhi (1998). "Organozirconium Chemistry Arrives". Chemical & Engineering News. 82 (16): 162. doi:10.1021/cen-v082n015.p035.