In mathematical physics, the Wu–Sprung potential, named after Hua Wu and Donald Sprung, is a potential function in one dimension inside a Hamiltonian with the potential defined by solving a non-linear integral equation defined by the Bohr–Sommerfeld quantization conditions involving the spectral staircase, the energies and the potential . here a is a classical turning point so , the quantum energies of the model are the roots of the Riemann Xi function and . In general, although Wu and Sprung considered only the smooth part, the potential is defined implicitly by ; with N(x) being the eigenvalue staircase and H(x) is the Heaviside step function.

For the case of the Riemann zeros Wu and Sprung and others have shown that the potential can be written implicitly in terms of the Gamma function and zeroth-order Bessel function.

and that the density of states of this Hamiltonian is just the Delsarte's formula for the Riemann zeta function and defined semiclassically as

here they have taken the derivative of the Euler product on the critical line ; also they use the Dirichlet generating function . is the Mangoldt function.

The main idea by Wu and Sprung and others is to interpret the density of states as the distributional Delsarte's formula and then use the WKB method to evaluate the imaginary part of the zeros by using quantum mechanics.

Wu and Sprung also showed that the zeta-regularized functional determinant is the Riemann Xi-function

The main idea inside this problem is to recover the potential from spectral data as in some inverse spectral problems in this case the spectral data is the Eigenvalue staircase, which is a quantum property of the system, the inverse of the potential then, satisfies an Abel integral equation (fractional calculus) which can be immediately solved to obtain the potential.

Asymptotics

edit

For large x if we take only the smooth part of the eigenvalue staircase  , then the potential as   is positive and it is given by the asymptotic expression   with   and   in the limit  . This potential is approximately a Morse potential with  

The asymptotic of the energies depend on the quantum number n as  , where W is the Lambert W function.

References

edit
  • Wu, Hua; Sprung, D. W. L. (1993). "Riemann zeros and a fractal potential". Physical Review E. 48 (4): 2595–2598. Bibcode:1993PhRvE..48.2595W. doi:10.1103/physreve.48.2595. PMID 9960893.2595-2598&rft.date=1993&rft_id=info:pmid/9960893&rft_id=info:doi/10.1103/physreve.48.2595&rft_id=info:bibcode/1993PhRvE..48.2595W&rft.aulast=Wu&rft.aufirst=Hua&rft.au=Sprung, D. W. L.&rfr_id=info:sid/en.wikipedia.org:Wu–Sprung potential" class="Z3988">
  • G. Sierra, A physics pathway to the Riemann hypothesis, arXiv:math-ph/1012.4264, 2010.
  • Slater, P B (2007). "Fractal fits to Riemann zeros". Canadian Journal of Physics. 85 (4): 345–357. arXiv:math-ph/0606005. Bibcode:2007CaJPh..85..345S. doi:10.1139/p07-050. S2CID 113401537.345-357&rft.date=2007&rft_id=info:arxiv/math-ph/0606005&rft_id=https://api.semanticscholar.org/CorpusID:113401537#id-name=S2CID&rft_id=info:doi/10.1139/p07-050&rft_id=info:bibcode/2007CaJPh..85..345S&rft.aulast=Slater&rft.aufirst=P B&rfr_id=info:sid/en.wikipedia.org:Wu–Sprung potential" class="Z3988">
  • Rev. Mod. Phys. 2011; 83, 307–330 Colloquium: Physics of the Riemann hypothesis
  • Trace formula in noncommutative geometry and the zeros of the Riemann zeta function Alain Connes arXiv:math/9811068
  • Castro, Carlos; Mahecha, Jorge (2004). "Fractal supersymmetric quantum mechanics, geometric probability and the Riemann Hypothesis". International Journal of Geometric Methods in Modern Physics. 1 (6): 751–793. Bibcode:2004IJGMM..01..751C. CiteSeerX 10.1.1.139.9142. doi:10.1142/s0219887804000393. S2CID 18781610.751-793&rft.date=2004&rft_id=https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.139.9142#id-name=CiteSeerX&rft_id=https://api.semanticscholar.org/CorpusID:18781610#id-name=S2CID&rft_id=info:doi/10.1142/s0219887804000393&rft_id=info:bibcode/2004IJGMM..01..751C&rft.aulast=Castro&rft.aufirst=Carlos&rft.au=Mahecha, Jorge&rfr_id=info:sid/en.wikipedia.org:Wu–Sprung potential" class="Z3988">
  • Castro, Carlos (2007). "On strategies towards the Riemann hypothesis: fractal supersymmetric QM and a trace formula". Int. J. Geom. Methods Mod. Phys. 4 (5): 861–880. Bibcode:2007IJGMM..04..861C. doi:10.1142/s0219887807002338. ISSN 0219-8878. Zbl 1204.11141.861-880&rft.date=2007&rft_id=https://zbmath.org/?format=complete&q=an:1204.11141#id-name=Zbl&rft.issn=0219-8878&rft_id=info:doi/10.1142/s0219887807002338&rft_id=info:bibcode/2007IJGMM..04..861C&rft.aulast=Castro&rft.aufirst=Carlos&rfr_id=info:sid/en.wikipedia.org:Wu–Sprung potential" class="Z3988">
  • Ramani, A.; Grammaticos, B.; Caurier, E. (1995). "Fractal potentials from energy level". Phys. Rev. E. 51 (6): 6323–6326. Bibcode:1995PhRvE..51.6323R. doi:10.1103/physreve.51.6323.6323-6326&rft.date=1995&rft_id=info:doi/10.1103/physreve.51.6323&rft_id=info:bibcode/1995PhRvE..51.6323R&rft.aulast=Ramani&rft.aufirst=A.&rft.au=Grammaticos, B.&rft.au=Caurier, E.&rfr_id=info:sid/en.wikipedia.org:Wu–Sprung potential" class="Z3988">
  • Lowe, Bruce D.; Pilant, Michael; Rundell, William (1992). "The Recovery of Potentials from Finite Spectral Data". SIAM J. Math. Anal. 23 (2): 482–504. doi:10.1137/0523023.482-504&rft.date=1992&rft_id=info:doi/10.1137/0523023&rft.aulast=Lowe&rft.aufirst=Bruce D.&rft.au=Pilant, Michael&rft.au=Rundell, William&rfr_id=info:sid/en.wikipedia.org:Wu–Sprung potential" class="Z3988">
  • Some remarks on the Wu–Sprung potential. Preliminary report Diego Dominici
  • http://empslocal.ex.ac.uk/people/staff/mrwatkin/zeta/NTfractality.htm