WASP-80 is a K-type main-sequence star about 162 light-years away from Earth. The star's age is much younger than the Sun's at 1.352±0.222 billion years.[7] WASP-80 could be similar to the Sun in concentration of heavy elements, although this measurement is highly uncertain.[6]

WASP-80 / Petra
Observation data
Epoch J2000      Equinox J2000
Constellation Aquila
Right ascension 20h 12m 40.1692s[1]
Declination −02° 08′ 39.1912″[1]
Apparent magnitude (V) 11.939
Characteristics
Evolutionary stage Main sequence
Spectral type K7[citation needed]
Astrometry
Radial velocity (Rv)9.82±0.77[2] km/s
Proper motion (μ) RA: -132.913[2] mas/yr
Dec.: -50.683[2] mas/yr
Parallax (π)20.1141 ± 0.0207 mas[2]
Distance162.2 ± 0.2 ly
(49.72 ± 0.05 pc)
Details
Mass0.614 0.014
−0.012
[3] M
Radius0.586 0.017
−0.018
[4] R
Surface gravity (log g)4.60±0.02[5] cgs
Temperature4066±22[5] K
Metallicity [Fe/H]0.13±0.11[6] dex
Rotation23.5±3[7]
Rotational velocity (v sin i)5.04±0.19[5] km/s
Age1.352±0.222[7] Gyr
Other designations
Petra, Gaia DR2 4223507222112425344, TYC 5165-481-1, GSC 05165-00481, 2MASS J20124017-0208391[1]
Database references
SIMBADdata

The star was named Petra in 2019 by Jordanian amateur astronomers as part of the NameExoWorlds contest.[8]

Three multiplicity surveys in 2015-2018 did not detect any stellar companions to WASP-80, but a survey in 2020 detected a 0.07M companion candidate at an angular separation 2.132±0.010 arcseconds, with a false alarm probability of 3%.[9]

Planetary system

edit

In 2013 a transiting hot Jupiter planet WASP-80 b was detected on a tight, circular orbit.[10] The planet was named Wadirum by Jordanian astronomers in December 2019.[8] Its equilibrium temperature is 825±19 K, while measured temperature of the dayside is 937±48 K and temperature of the nightside is 851±14 K. This temperature difference indicates a rather low planetary albedo and weak global transport of heat.[11]

Measurement of the Rossiter–McLaughlin effect in 2015 revealed WASP-80b's is orbit is well-aligned with the equatorial plane of the star, with orbital obliquity equal to 14±14°.[4]

Although one transmission spectrum of the planetary atmosphere showed signs of ionised potassium,[12] another measurement in 2017 yielded a gray and featureless spectrum, probably due to a high cloud deck[13] or haze[14] in the atmosphere of WASP-80b. [11] The James Webb Space Telescope has characterized the atmospheric composition of WASP-80 b, detecting signs of water vapor and methane on the planet.[15] This discovery not only uncovers the exoplanet's origin and evolution but also fosters a comparative study bridging our solar system's gas giants and diverse exoplanets.[16]

The WASP-80 planetary system
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b (Wadirum) 0.571±0.02[3] MJ 0.0344 0.0011
−0.0010
[4]
3.067852[4] 0[4] 89.02 0.11
−0.10
[4]°
1.0091 0.011
−0.0095
[3] RJ

References

edit
  1. ^ a b c "WASP-80". SIMBAD. Centre de données astronomiques de Strasbourg.
  2. ^ a b c d Brown, A. G. A.; et al. (Gaia collaboration) (2021). "Gaia Early Data Release 3: Summary of the contents and survey properties". Astronomy & Astrophysics. 649: A1. arXiv:2012.01533. Bibcode:2021A&A...649A...1G. doi:10.1051/0004-6361/202039657. S2CID 227254300. (Erratum: doi:10.1051/0004-6361/202039657e). Gaia EDR3 record for this source at VizieR.
  3. ^ a b c Wang, Xian-Yu; Wang, Yong-Hao; Wang, Songhu; Wu, Zhen-Yu; Rice, Malena; Zhou, Xu; Hinse, Tobias C.; Liu, Hui-Gen; Ma, Bo; Peng, Xiyan; Zhang, Hui; Yu, Cong; Zhou, Ji-Lin; Laughlin, Gregory (2021), "Transiting Exoplanet Monitoring Project (TEMP). VI. The Homogeneous Refinement of System Parameters for 39 Transiting Hot Jupiters with 127 New Light Curves", The Astrophysical Journal Supplement Series, 255 (1): 15, arXiv:2105.14851, Bibcode:2021ApJS..255...15W, doi:10.3847/1538-4365/ac0835, S2CID 235253975
  4. ^ a b c d e f Triaud, A. H. M. J.; Gillon, M.; Ehrenreich, D.; Herrero, E.; Lendl, M.; Anderson, D. R.; Collier Cameron, A.; Delrez, L.; Demory, B.-O.; Hellier, C.; Heng, K.; Jehin, E.; Maxted, P. F. L.; Pollacco, D.; Queloz, D.; Ribas, I.; Smalley, B.; Smith, A. M. S.; Udry, S. (2015), "WASP-80b has a dayside within the T-dwarf range", Monthly Notices of the Royal Astronomical Society, 450 (3): 2279–2290, arXiv:1503.08152, doi:10.1093/mnras/stv7062279-2290&rft.date=2015&rft_id=info:arxiv/1503.08152&rft_id=info:doi/10.1093/mnras/stv706&rft.aulast=Triaud&rft.aufirst=A. H. M. J.&rft.au=Gillon, M.&rft.au=Ehrenreich, D.&rft.au=Herrero, E.&rft.au=Lendl, M.&rft.au=Anderson, D. R.&rft.au=Collier Cameron, A.&rft.au=Delrez, L.&rft.au=Demory, B.-O.&rft.au=Hellier, C.&rft.au=Heng, K.&rft.au=Jehin, E.&rft.au=Maxted, P. F. L.&rft.au=Pollacco, D.&rft.au=Queloz, D.&rft.au=Ribas, I.&rft.au=Smalley, B.&rft.au=Smith, A. M. S.&rft.au=Udry, S.&rfr_id=info:sid/en.wikipedia.org:WASP-80" class="Z3988">
  5. ^ a b c Gill, S.; Maxted, P. F. L.; Smalley, B. (2018), "The atmospheric parameters of FGK stars using wavelet analysis of CORALIE spectra", Astronomy & Astrophysics, 612: A111, arXiv:1801.06106, Bibcode:2018A&A...612A.111G, doi:10.1051/0004-6361/201731954, S2CID 119331772
  6. ^ a b Wallack, Nicole L.; Knutson, Heather A.; Morley, Caroline V.; Moses, Julianne I.; Thomas, Nancy H.; Thorngren, Daniel P.; Deming, Drake; Désert, Jean-Michel; Fortney, Jonathan J.; Kammer, Joshua A. (2019), "Investigating Trends in Atmospheric Compositions of Cool Gas Giant Planets UsingSpitzer Secondary Eclipses", The Astronomical Journal, 158 (6): 217, arXiv:1908.00014, Bibcode:2019AJ....158..217W, doi:10.3847/1538-3881/ab2a05, S2CID 199064423
  7. ^ a b c Gallet, F.; Gallet (2020), "TATOO: Tidal-chronology standalone tool to estimate the age of massive close-in planetary systems", Astronomy & Astrophysics, 641: A38, arXiv:2006.07880, Bibcode:2020A&A...641A..38G, doi:10.1051/0004-6361/202038058, S2CID 219687851
  8. ^ a b "Star, its exoplanet named after Petra, Wadi Rum". Roya News. 2019-12-17. Retrieved 2021-04-04.
  9. ^ Bohn, A. J.; Southworth, J.; Ginski, C.; Kenworthy, M. A.; Maxted, P. F. L.; Evans, D. F. (2020), "A multiplicity study of transiting exoplanet host stars", Astronomy & Astrophysics, 635: A73, arXiv:2001.08224, Bibcode:2020A&A...635A..73B, doi:10.1051/0004-6361/201937127, S2CID 210861118
  10. ^ Triaud, A. H. M. J.; Anderson, D. R.; Collier Cameron, A.; Doyle, A. P.; Fumel, A.; Gillon, M.; Hellier, C.; Jehin, E.; Lendl, M.; Lovis, C.; Maxted, P. F. L.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Smith, A. M. S.; Udry, S.; West, R. G.; Wheatley, P. J. (2013), "WASP-80b: A gas giant transiting a cool dwarf", Astronomy & Astrophysics, 551: A80, arXiv:1303.0254, Bibcode:2013A&A...551A..80T, doi:10.1051/0004-6361/201220900, S2CID 67805044
  11. ^ a b Wong, Ian; Chachan, Yayaati; Knutson, Heather A.; Henry, Gregory W.; Adams, Danica; Kataria, Tiffany; Benneke, Björn; Gao, Peter; Deming, Drake; López-Morales, Mercedes; Sing, David K.; Alam, Munazza K.; Ballester, Gilda E.; Barstow, Joanna K.; Buchhave, Lars A.; Dos Santos, Leonardo A.; Fu, Guangwei; Muñoz, Antonio García; MacDonald, Ryan J.; Mikal-Evans, Thomas; Sanz-Forcada, Jorge; Wakeford, Hannah R. (2022), "The Hubble PanCET Program: A Featureless Transmission Spectrum for WASP-29b and Evidence of Enhanced Atmospheric Metallicity on WASP-80b", The Astronomical Journal, 164 (1): 30, arXiv:2205.10765, Bibcode:2022AJ....164...30W, doi:10.3847/1538-3881/ac7234, S2CID 248987053
  12. ^ Sedaghati, Elyar; Boffin, Henri M. J.; Delrez, Laetitia; Gillon, Michaël; Csizmadia, Szilard; Smith, Alexis M. S.; Rauer, Heike (2017), "Probing the atmosphere of a sub-Jovian planet orbiting a cool dwarf", Monthly Notices of the Royal Astronomical Society, 468 (3): 3123–3134, arXiv:1703.02630, doi:10.1093/mnras/stx6463123-3134&rft.date=2017&rft_id=info:arxiv/1703.02630&rft_id=info:doi/10.1093/mnras/stx646&rft.aulast=Sedaghati&rft.aufirst=Elyar&rft.au=Boffin, Henri M. J.&rft.au=Delrez, Laetitia&rft.au=Gillon, Michaël&rft.au=Csizmadia, Szilard&rft.au=Smith, Alexis M. S.&rft.au=Rauer, Heike&rfr_id=info:sid/en.wikipedia.org:WASP-80" class="Z3988">
  13. ^ Parviainen, H.; Pallé, E.; Chen, G.; Nortmann, L.; Murgas, F.; Nowak, G.; Aigrain, S.; Booth, A.; Abazorius, M.; Iro, N. (2018), "The GTC exoplanet transit spectroscopy survey", Astronomy & Astrophysics, 609: A33, arXiv:1709.01875, doi:10.1051/0004-6361/201731113, S2CID 118890485
  14. ^ Kirk, J.; Wheatley, P. J.; Louden, T.; Skillen, I.; King, G. W.; McCormac, J.; Irwin, P. G. J. (2018), "LRG-BEASTS III: Ground-based transmission spectrum of the gas giant orbiting the cool dwarf WASP-80", Monthly Notices of the Royal Astronomical Society, 474: 876–885, arXiv:1710.10083, doi:10.1093/mnras/stx2826876-885&rft.date=2018&rft_id=info:arxiv/1710.10083&rft_id=info:doi/10.1093/mnras/stx2826&rft.aulast=Kirk&rft.aufirst=J.&rft.au=Wheatley, P. J.&rft.au=Louden, T.&rft.au=Skillen, I.&rft.au=King, G. W.&rft.au=McCormac, J.&rft.au=Irwin, P. G. J.&rfr_id=info:sid/en.wikipedia.org:WASP-80" class="Z3988">
  15. ^ "James Webb Telescope Reveals Methane in Exoplanet WASP-80 b's Atmosphere". www.jameswebbdiscovery.com. Retrieved 2024-02-25.
  16. ^ "James Webb Telescope Reveals Methane in Exoplanet WASP-80 b's Atmosphere". www.jameswebbdiscovery.com. Retrieved 2024-02-25.