BD 00 316

(Redirected from WASP-71)

BD 00 316 is an ordinary star with a close-orbiting planetary companion in the equatorial constellation of Cetus. It is also known as WASP-71 since 2019;[3] BD 00 316 is the stellar identifier from the Bonner Durchmusterung catalogue. With an apparent visual magnitude of 10.56,[2] it is too faint to be visible to the naked eye. This star is located at a distance of 1,160 light-years based on parallax measurements, and is drifting further away with a heliocentric radial velocity of 7.7 km/s.[4]

BD 00 316 / Mpingo
Observation data
Epoch J2000      Equinox J2000
Constellation Cetus
Right ascension 01h 57m 03.204s[1]
Declination 00° 45′ 31.88″[1]
Apparent magnitude (V) 10.56[2]
Characteristics
Spectral type F8[3]
B−V color index 0.896[2]
Astrometry
Radial velocity (Rv)7.690±0.004[4] km/s
Proper motion (μ) RA: 23.418 mas/yr[1]
Dec.: −6.844 mas/yr[1]
Parallax (π)2.8158 ± 0.0265 mas[1]
Distance1,160 ± 10 ly
(355 ± 3 pc)
Details[5]
Mass1.53 0.07
−0.06
 M
Radius2.17 0.18
−0.10
 R
Surface gravity (log g)3.944 0.036
−0.050
 cgs
Temperature6,050±100 K
Metallicity [Fe/H]0.15±0.07 dex
Rotational velocity (v sin i)7.8±0.3 km/s
Age3.6 1.6
−1.0
 Gyr
Other designations
Mpingo, BD 00 316, Gaia DR2 2507901914613005056, WASP-71, TYC 30-116-1, 2MASS J01570320 0045318[6]
Database references
SIMBAD436 data

This is classified as an F-type star with a stellar classification of F8.[3] It is more than double the diameter of the Sun with 1.5 times the Sun's mass. The star is younger than the Sun at about 3.6 billion years,[5] yet is already evolving away from the main sequence.[3] BD 00 316 is enriched in heavy elements, having 140% of the solar abundance of iron.[5] Imaging surveys in 2015 and 2020 failed to find any stellar companions for BD 00 316.[7][8]

The star was named Mpingo by Tanzanian amateur astronomers in 2020 as part of the NameExoWorlds contest, after the mpingo tree (Dalbergia melanoxylon) whose wood is a type of ebony used in musical instruments.[9]

Planetary system

edit

In 2012 a transiting superjovian planet, designated component b, was detected on a tight, circular orbit.[3] The planetary orbit is well aligned with the equatorial plane of the star, the misalignment angle being equal to −1.9 7.1
−7.5
°.[5] Its equilibrium temperature is 2,016.1 67.0
−52.5
K.[5]

The planet was named Tanzanite by Tanzanian amateur astronomers in 2020 as part of the NameExoWorlds contest, after the mineral also known as tanzanite.[9]

The WASP-71 planetary system[5]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b (Tanzanite) 2.14±0.08 MJ 0.0460±0.0006 2.903676±0.000008 <0.019[10] 85.8 2.4
−2.1
°
1.35 0.13
−0.07
 RJ

References

edit
  1. ^ a b c d Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
  2. ^ a b c Høg, E.; et al. (2000). "The Tycho-2 catalogue of the 2.5 million brightest stars". Astronomy and Astrophysics. 355: L27. Bibcode:2000A&A...355L..27H. doi:10.1888/0333750888/2862. ISBN 978-0333750889. million brightest stars&rft.volume=355&rft.pages=L27&rft.date=2000&rft_id=info:doi/10.1888/0333750888/2862&rft_id=info:bibcode/2000A&A...355L..27H&rft.isbn=978-0333750889&rft.aulast=Høg&rft.aufirst=E.&rft.au=Fabricius, C.&rft.au=Makarov, V. V.&rft.au=Urban, S.&rft.au=Corbin, T.&rft.au=Wycoff, G.&rft.au=Bastian, U.&rft.au=Schwekendiek, P.&rft.au=Wicenec, A.&rfr_id=info:sid/en.wikipedia.org:BD+00 316" class="Z3988">
  3. ^ a b c d e Smith, A. M. S.; Anderson, D. R.; Bouchy, F.; Collier Cameron, A.; Doyle, A. P.; Fumel, A.; Gillon, M.; Hébrard, G.; Hellier, C.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Moutou, C.; Pepe, F.; Pollacco, D.; Queloz, D.; Santerne, A.; Segransan, D.; Smalley, B.; Southworth, J.; Triaud, A. H. M. J.; Udry, S.; West, R. G. (2013), "WASP-71b: a bloated hot Jupiter in a 2.9-day, prograde orbit around an evolved F8 star", Astronomy & Astrophysics, 552: A120, arXiv:1211.3045, Bibcode:2013A&A...552A.120S, doi:10.1051/0004-6361/201220727, S2CID 118575479
  4. ^ a b Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics. 616. A1. arXiv:1804.09365. Bibcode:2018A&A...616A...1G. doi:10.1051/0004-6361/201833051. Gaia DR2 record for this source at VizieR.
  5. ^ a b c d e f Brown, D. J. A.; Triaud, A. H. M. J.; Doyle, A. P.; Gillon, M.; Lendl, M.; Anderson, D. R.; Collier Cameron, A.; Hébrard, G.; Hellier, C.; Lovis, C.; Maxted, P. F. L.; Pepe, F.; Pollacco, D.; Queloz, D.; Smalley, B. (2016), "Rossiter–McLaughlin models and their effect on estimates of stellar rotation, illustrated using six WASP systems", Monthly Notices of the Royal Astronomical Society, 464 (1): 810–839, arXiv:1610.00600, Bibcode:2017MNRAS.464..810B, doi:10.1093/mnras/stw2316, S2CID 53497449810-839&rft.date=2016&rft_id=info:arxiv/1610.00600&rft_id=https://api.semanticscholar.org/CorpusID:53497449#id-name=S2CID&rft_id=info:doi/10.1093/mnras/stw2316&rft_id=info:bibcode/2017MNRAS.464..810B&rft.aulast=Brown&rft.aufirst=D. J. A.&rft.au=Triaud, A. H. M. J.&rft.au=Doyle, A. P.&rft.au=Gillon, M.&rft.au=Lendl, M.&rft.au=Anderson, D. R.&rft.au=Collier Cameron, A.&rft.au=Hébrard, G.&rft.au=Hellier, C.&rft.au=Lovis, C.&rft.au=Maxted, P. F. L.&rft.au=Pepe, F.&rft.au=Pollacco, D.&rft.au=Queloz, D.&rft.au=Smalley, B.&rfr_id=info:sid/en.wikipedia.org:BD+00 316" class="Z3988">
  6. ^ "BD 00 316". SIMBAD. Centre de données astronomiques de Strasbourg.
  7. ^ Wöllert, Maria; Brandner, Wolfgang (2015), "A Lucky Imaging search for stellar sources near 74 transit hosts", Astronomy & Astrophysics, 579: A129, arXiv:1506.05456, Bibcode:2015A&A...579A.129W, doi:10.1051/0004-6361/201526525, S2CID 118903879
  8. ^ Bohn, A. J.; Southworth, J.; Ginski, C.; Kenworthy, M. A.; Maxted, P. F. L.; Evans, D. F. (2020), "A multiplicity study of transiting exoplanet host stars. I. High-contrast imaging with VLT/SPHERE", Astronomy & Astrophysics, 635: A73, arXiv:2001.08224, Bibcode:2020A&A...635A..73B, doi:10.1051/0004-6361/201937127, S2CID 210861118
  9. ^ a b The IAU announces names for WASP exoplanets
  10. ^ Bonomo, A. S.; Desidera, S.; Benatti, S.; Borsa, F.; Crespi, S.; Damasso, M.; Lanza, A. F.; Sozzetti, A.; Lodato, G.; Marzari, F.; Boccato, C.; Claudi, R. U.; Cosentino, R.; Covino, E.; Gratton, R.; Maggio, A.; Micela, G.; Molinari, E.; Pagano, I.; Piotto, G.; Poretti, E.; Smareglia, R.; Affer, L.; Biazzo, K.; Bignamini, A.; Esposito, M.; Giacobbe, P.; Hébrard, G.; Malavolta, L.; et al. (2017), "The GAPS Programme with HARPS-N@TNG XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets", Astronomy & Astrophysics, A107: 602, arXiv:1704.00373, Bibcode:2017A&A...602A.107B, doi:10.1051/0004-6361/201629882, S2CID 118923163