Polyhedra.html
editFor drawing an old version of the polyhedrons at platonic solid and archimedean solid. Can't draw the ones at catalan solid.
<html><head><title>Polyhedra</title><body> <applet width=200 height=200 code="Polyhedra.class" codebase="."></applet> </html>
Polyhedra.java
editimport java.awt.*; import java.applet.*; //-a,-b,-c, -a,-b,c, -a,b,-c, -a,b,c, a,-b,-c, a,-b,c, a,b,-c, a,b,c, //-c,-a,-b, -c,-a,b, -c,a,-b, -c,a,b, c,-a,-b, c,-a,b, c,a,-b, c,a,b, //-b,-c,-a, -b,-c,a, -b,c,-a, -b,c,a, b,-c,-a, b,-c,a, b,c,-a, b,c,a, public class Polyhedra extends Applet{ double g=1.6180339887498948482045868343656381177203; //(1 Math.sqrt(5))/2; double d=0.6180339887498948482045868343656381177203; //1/g; double s=1.4142135623730950488016887242096980785696; //Math.sqrt(2); double q=2.6180339887498948482045868343656381177203; //(1 Math.sqrt(5))/2 1; double j=3.2360679774997896964091736687312762354406; //(1 Math.sqrt(5)); double w=(Math.pow(Math.sqrt(297) 17, 1/3.)-Math.pow(Math.sqrt(297)-17, 1/3.)-1)/3; //w w*w w*w*w==1 double w2=Math.pow((g Math.sqrt(g-5/27.))/2, 1/3.) Math.pow((g-Math.sqrt(g-5/27.))/2, 1/3.); //w2*w2*w2-2*w2==g double aa=w2-1/w2; double bb=w2*g q g/w2; double tetrav[]={ -1,-s,0, -1,s,0, 1,0,-s, 1,0,s}; int tetrat[]={ 0,1,3, 3,1,2, 1,0,2, 3,2,0}; double hexav[]={ -1,-1,-1, -1,-1,1, -1,1,-1, -1,1,1, 1,-1,-1, 1,-1,1, 1,1,-1, 1,1,1}; int hexat[]={ 0,2,3,1, 2,6,7,3, 0,4,6,2, 3,7,5,1, 0,1,5,4, 6,4,5,7}; double octav[]={ -1,0,0, 1,0,0, 0,-1,0, 0,1,0, 0,0,-1, 0,0,1}; int octat[]={ 0,4,3, 3,4,1, 1,4,2, 2,4,0, 3,5,0, 0,5,2, 2,5,1, 1,5,3}; double dodecav[]={ 0,-d,-g, 0,-d,g, 0,d,-g, 0,d,g, -d,-g,0, -d,g,0, d,-g,0, d,g,0, -g,0,-d, g,0,-d, -g,0,d, g,0,d, -1,-1,-1, -1,-1,1, -1,1,-1, -1,1,1, 1,-1,-1, 1,-1,1, 1,1,-1, 1,1,1}; int dodecat[]={ 0,2,14,8,12, 0,16,9,18,2, 4,6,16,0,12, 2,18,7,5,14, 13,4,12,8,10, 6,17,11,9,16, 15,10,8,14,5, 18,9,11,19,7, 1,17,6,4,13, 5,7,19,3,15, 13,10,15,3,1, 19,11,17,1,3}; double icosav[]={ 0,-1,-g, 0,-1,g, 0,1,-g, 0,1,g, -1,-g,0, -1,g,0, 1,-g,0, 1,g,0, -g,0,-1, g,0,-1, -g,0,1, g,0,1}; int icosat[]={ 0,2,8, 2,0,9, 4,0,8, 4,6,0, 6,9,0, 5,8,2, 5,2,7, 7,2,9, 10,4,8, 10,8,5, 6,11,9, 9,11,7, 10,5,3, 10,1,4, 1,11,6, 3,7,11, 1,6,4, 3,5,7, 3,11,1, 1,10,3}; double icosidodecav[]={ -j,0,0, j,0,0, 0,-j,0, 0,j,0, 0,0,-j, 0,0,j, -1,-g,-q, -1,-g,q, -1,g,-q, -1,g,q, 1,-g,-q, 1,-g,q, 1,g,-q, 1,g,q, -g,-q,-1, -g,q,-1, g,-q,-1, g,q,-1, -g,-q,1, -g,q,1, g,-q,1, g,q,1, -q,-1,-g, q,-1,-g, -q,-1,g, q,-1,g, -q,1,-g, q,1,-g, -q,1,g, q,1,g }; int icosidodecat[]={ 3,17,21,3, 3,27,23,1, 3,1,25,29, 3,21,29,13, 3,12,27,17, 3,10,16,23, 3,20,11,25, 3,9,13,5, 3,19,9,28, 3,26,8,15, 3,15,3,19, 3,7,5,11, 3,18,24,7, 3,2,14,18, 3,2,20,16, 3,4,6,10, 3,6,22,14, 3,8,4,12, 3,0,22,26, 3,0,28,24, 5,17,27,1,29,21, 5,1,23,16,20,25, 5,4,10,23,27,12, 5,5,13,29,25,11, 5,3,21,13,9,19, 5,8,12,17,3,15, 5,0,26,15,19,28, 5,24,28,9,5,7, 5,0,24,18,14,22, 5,2,18,7,11,20, 5,10,6,14,2,16, 5,8,26,22,6,4 }; double cuboctav[]={ -1,-1,0, -1,1,0, 1,-1,0, 1,1,0, 0,-1,-1, 0,-1,1, 0,1,-1, 0,1,1, -1,0,-1, 1,0,-1, -1,0,1, 1,0,1 }; int cuboctat[]={ 3,3,11,7, 3,9,3,6, 3,11,2,5, 3,4,2,9, 3,7,10,1, 3,1,8,6, 3,0,10,5, 3,4,8,0, 4,3,9,2,11, 4,11,5,10,7, 4,7,1,6,3, 4,10,0,8,1, 4,6,8,4,9, 4,4,0,5,2 }; double truncicosav[]={ 0,-1,-3*g, 0,-1,3*g, 0,1,-3*g, 0,1,3*g, -3*g,0,-1, 3*g,0,-1, -3*g,0,1, 3*g,0,1, -1,-3*g,0, -1,3*g,0, 1,-3*g,0, 1,3*g,0, -2,-(g q),-g, -2,-(g q),g, -2,(g q),-g, -2,(g q),g, 2,-(g q),-g, 2,-(g q),g, 2,(g q),-g, 2,(g q),g, -g,-2,-(g q), g,-2,-(g q), -g,-2,(g q), g,-2,(g q), -g,2,-(g q), g,2,-(g q), -g,2,(g q), g,2,(g q), -(g q),-g,-2, -(g q),g,-2, (g q),-g,-2, (g q),g,-2, -(g q),-g,2, -(g q),g,2, (g q),-g,2, (g q),g,2, -1,-(2 g),-2*g, -1,-(2 g),2*g, -1,(2 g),-2*g, -1,(2 g),2*g, 1,-(2 g),-2*g, 1,-(2 g),2*g, 1,(2 g),-2*g, 1,(2 g),2*g, -2*g,-1,-(2 g), 2*g,-1,-(2 g), -2*g,-1,(2 g), 2*g,-1,(2 g), -2*g,1,-(2 g), 2*g,1,-(2 g), -2*g,1,(2 g), 2*g,1,(2 g), -(2 g),-2*g,-1, -(2 g),2*g,-1, (2 g),-2*g,-1, (2 g),2*g,-1, -(2 g),-2*g,1, -(2 g),2*g,1, (2 g),-2*g,1, (2 g),2*g,1 }; int truncicosat[]={ 6,9,11,19,43,39,15, 6,55,31,5,7,35,59, 6,27,43,19,59,35,51, 6,11,9,14,38,42,18, 6,20,44,28,52,12,36, 6,0,2,24,48,44,20, 6,48,24,38,14,53,29, 6,0,21,45,49,25,2, 6,12,8,10,16,40,36, 6,18,42,25,49,31,55, 6,23,47,34,58,17,41, 6,1,3,27,51,47,23, 6,21,40,16,54,30,45, 6,7,5,30,54,58,34, 6,39,26,50,33,57,15, 6,3,1,22,46,50,26, 6,57,33,6,4,29,53, 6,6,32,56,52,28,4, 6,22,37,13,56,32,46, 6,37,41,17,10,8,13, 5,59,19,11,18,55, 5,35,7,34,47,51, 5,3,26,39,43,27, 5,44,48,29,4,28, 5,20,36,40,21,0, 5,38,24,2,25,42, 5,14,9,15,57,53, 5,10,17,58,54,16, 5,22,1,23,41,37, 5,49,45,30,5,31, 5,50,46,32,6,33, 5,13,8,12,52,56 }; double trunctetrav[]={ 3,1,1, 1,3,1, 1,1,3, 3,-1,-1, -1,3,-1, -1,-1,3, -3,-1,1, 1,-3,-1, -1,1,-3, -3,1,-1, -1,-3,1, 1,-1,-3 }; int trunctetrat[]={ 6,11,3,0,1,4,8, 6,3,7,10,5,2,0, 6,6,10,7,11,8,9, 6,9,4,1,2,5,6, 3,0,2,1, 3,8,4,9, 3,6,5,10, 3,7,3,11 }; double trunchexav[]={ -(s-1),-1,-1, -(s-1),-1,1, -(s-1),1,-1, -(s-1),1,1, (s-1),-1,-1, (s-1),-1,1, (s-1),1,-1, (s-1),1,1, -1,-(s-1),-1, 1,-(s-1),-1, -1,-(s-1),1, 1,-(s-1),1, -1,(s-1),-1, 1,(s-1),-1, -1,(s-1),1, 1,(s-1),1, -1,-1,-(s-1), -1,1,-(s-1), 1,-1,-(s-1), 1,1,-(s-1), -1,-1,(s-1), -1,1,(s-1), 1,-1,(s-1), 1,1,(s-1) }; int trunchexat[]={ 8,5,22,18,4,0,16,20,1, 8,21,14,10,20,16,8,12,17, 8,14,3,7,15,11,5,1,10, 8,6,19,23,7,3,21,17,2, 8,0,4,9,13,6,2,12,8, 8,13,9,18,22,11,15,23,19, 3,11,22,5, 3,18,9,4, 3,3,14,21, 3,2,17,12, 3,10,1,20, 3,7,23,15, 3,13,19,6, 3,0,8,16 }; double truncoctav[]={ -2,-1,0, -2,1,0, 2,-1,0, 2,1,0, 0,-2,-1, 0,-2,1, 0,2,-1, 0,2,1, -1,0,-2, 1,0,-2, -1,0,2, 1,0,2, -1,-2,0, -1,2,0, 1,-2,0, 1,2,0, 0,-1,-2, 0,-1,2, 0,1,-2, 0,1,2, -2,0,-1, 2,0,-1, -2,0,1, 2,0,1 }; int truncoctat[]={ 6,17,11,23,2,14,5, 6,14,2,21,9,16,4, 6,7,15,3,23,11,19, 6,0,12,4,16,8,20, 6,19,10,22,1,13,7, 6,17,5,12,0,22,10, 6,1,20,8,18,6,13, 6,6,18,9,21,3,15, 4,12,5,14,4, 4,2,23,3,21, 4,13,6,15,7, 4,8,16,9,18, 4,0,20,1,22, 4,11,17,10,19 }; double truncdodecav[]={ (0),-(3-g),-(5*g), (0),-(3-g),(5*g), (0),(3-g),-(5*g), (0),(3-g),(5*g), -(5*g),(0),-(3-g), (5*g),(0),-(3-g), -(5*g),(0),(3-g), (5*g),(0),(3-g), -(3-g),-(5*g),(0), -(3-g),(5*g),(0), (3-g),-(5*g),(0), (3-g),(5*g),(0), -(3-g),-(2 g),-(4 2*g), -(3-g),-(2 g),(4 2*g), -(3-g),(2 g),-(4 2*g), -(3-g),(2 g),(4 2*g), (3-g),-(2 g),-(4 2*g), (3-g),-(2 g),(4 2*g), (3-g),(2 g),-(4 2*g), (3-g),(2 g),(4 2*g), -(4 2*g),-(3-g),-(2 g), (4 2*g),-(3-g),-(2 g), -(4 2*g),-(3-g),(2 g), (4 2*g),-(3-g),(2 g), -(4 2*g),(3-g),-(2 g), (4 2*g),(3-g),-(2 g), -(4 2*g),(3-g),(2 g), (4 2*g),(3-g),(2 g), -(2 g),-(4 2*g),-(3-g), -(2 g),(4 2*g),-(3-g), (2 g),-(4 2*g),-(3-g), (2 g),(4 2*g),-(3-g), -(2 g),-(4 2*g),(3-g), -(2 g),(4 2*g),(3-g), (2 g),-(4 2*g),(3-g), (2 g),(4 2*g),(3-g), -(2 g),-(-2 4*g),-(1 3*g), -(2 g),-(-2 4*g),(1 3*g), -(2 g),(-2 4*g),-(1 3*g), -(2 g),(-2 4*g),(1 3*g), (2 g),-(-2 4*g),-(1 3*g), (2 g),-(-2 4*g),(1 3*g), (2 g),(-2 4*g),-(1 3*g), (2 g),(-2 4*g),(1 3*g), -(1 3*g),-(2 g),-(-2 4*g), (1 3*g),-(2 g),-(-2 4*g), -(1 3*g),-(2 g),(-2 4*g), (1 3*g),-(2 g),(-2 4*g), -(1 3*g),(2 g),-(-2 4*g), (1 3*g),(2 g),-(-2 4*g), -(1 3*g),(2 g),(-2 4*g), (1 3*g),(2 g),(-2 4*g), -(-2 4*g),-(1 3*g),-(2 g), -(-2 4*g),(1 3*g),-(2 g), (-2 4*g),-(1 3*g),-(2 g), (-2 4*g),(1 3*g),-(2 g), -(-2 4*g),-(1 3*g),(2 g), -(-2 4*g),(1 3*g),(2 g), (-2 4*g),-(1 3*g),(2 g), (-2 4*g),(1 3*g),(2 g) }; int truncdodecat[]={ 10,24,48,53,29,33,57,50,26,6,4, 10,53,38,14,18,42,55,31,11,9,29, 10,39,57,33,9,11,35,59,43,19,15, 10,40,45,21,25,49,42,18,2,0,16, 10,28,52,44,20,4,6,22,46,56,32, 10,5,7,27,51,59,35,31,55,49,25, 10,8,32,56,37,13,17,41,58,34,10, 10,17,1,3,19,43,51,27,23,47,41, 10,47,23,7,5,21,45,54,30,34,58, 10,37,46,22,26,50,39,15,3,1,13, 10,24,20,44,36,12,0,2,14,38,48, 10,36,52,28,8,10,30,54,40,16,12, 3,33,29,9, 3,50,57,39, 3,53,48,38, 3,11,31,35, 3,25,21,5, 3,42,49,55, 3,7,23,27, 3,40,54,45, 3,52,36,44, 3,8,28,32, 3,22,6,26, 3,20,24,4, 3,51,43,59, 3,56,46,37, 3,13,1,17, 3,41,47,58, 3,3,15,19, 3,14,2,18, 3,12,16,0, 3,10,34,30 }; double rhombicuboctav[]={ -(1 s),-1,-1, -(1 s),-1,1, -(1 s),1,-1, -(1 s),1,1, (1 s),-1,-1, (1 s),-1,1, (1 s),1,-1, (1 s),1,1, -1,-(1 s),-1, 1,-(1 s),-1, -1,-(1 s),1, 1,-(1 s),1, -1,(1 s),-1, 1,(1 s),-1, -1,(1 s),1, 1,(1 s),1, -1,-1,-(1 s), -1,1,-(1 s), 1,-1,-(1 s), 1,1,-(1 s), -1,-1,(1 s), -1,1,(1 s), 1,-1,(1 s), 1,1,(1 s) }; int rhombicuboctat[]={ 4,5,7,6,4, 4,5,22,23,7, 4,6,7,15,13, 4,4,6,19,18, 4,9,11,5,4, 4,21,20,1,3, 4,3,1,0,2, 4,2,12,14,3, 4,17,2,0,16, 4,0,1,10,8, 4,10,11,9,8, 4,8,9,18,16, 4,16,18,19,17, 4,11,10,20,22, 4,22,20,21,23, 4,23,21,14,15, 4,12,17,19,13, 4,13,15,14,12, 3,11,22,5, 3,7,23,15, 3,6,13,19, 3,9,4,18, 3,14,21,3, 3,16,0,8, 3,17,12,2, 3,1,20,10 }; double snubhexa1v[]={ -1,-w,1/w, -1,w,-1/w, 1,-w,-1/w, 1,w,1/w, 1/w,-1,-w, -1/w,-1,w, -1/w,1,-w, 1/w,1,w, -w,1/w,-1, w,-1/w,-1, -w,-1/w,1, w,1/w,1, -1,-1/w,-w, -1,1/w,w, 1,-1/w,w, 1,1/w,-w, -w,-1,-1/w, w,-1,1/w, w,1,-1/w, -w,1,1/w, -1/w,-w,-1, 1/w,w,-1, -1/w,w,1, 1/w,-w,1 }; int snubhexa1t[]={ 4,9,12,10,14, 4,16,2,18,1, 4,3,17,0,19, 4,15,11,13,8, 4,22,5,20,6, 4,23,7,21,4, 3,12,5,10, 3,12,20,5, 3,5,0,10, 3,10,0,17, 3,22,0,5, 3,11,15,7, 3,19,11,3, 3,11,7,3, 3,9,14,4, 3,14,23,4, 3,10,17,14, 3,14,17,23, 3,15,21,7, 3,7,23,3, 3,20,12,16, 3,1,18,8, 3,23,17,3, 3,6,20,1, 3,12,9,16, 3,20,16,1, 3,9,2,16, 3,9,4,2, 3,4,21,2, 3,18,21,15, 3,18,15,8, 3,8,6,1, 3,6,8,13, 3,22,6,13, 3,11,19,13, 3,13,19,22, 3,22,19,0, 3,21,18,2 }; double snubhexa2v[]={ 1,-w,1/w, 1,w,-1/w, -1,-w,-1/w, -1,w,1/w, -1/w,-1,-w, 1/w,-1,w, 1/w,1,-w, -1/w,1,w, w,1/w,-1, -w,-1/w,-1, w,-1/w,1, -w,1/w,1, 1,-1/w,-w, 1,1/w,w, -1,-1/w,w, -1,1/w,-w, w,-1,-1/w, -w,-1,1/w, -w,1,-1/w, w,1,1/w, 1/w,-w,-1, -1/w,w,-1, 1/w,w,1, -1/w,-w,1 }; int snubhexa2t[]={ 4,9,14,10,12, 4,18,2,16,1, 4,3,19,0,17, 4,15,8,13,11, 4,22,6,20,5, 4,23,4,21,7, 3,12,10,5, 3,12,5,20, 3,5,10,0, 3,10,17,0, 3,22,5,0, 3,11,7,15, 3,19,3,11, 3,11,3,7, 3,9,4,14, 3,14,4,23, 3,10,14,17, 3,14,23,17, 3,15,7,21, 3,7,3,23, 3,20,16,12, 3,1,8,18, 3,23,3,17, 3,6,1,20, 3,12,16,9, 3,20,1,16, 3,9,16,2, 3,9,2,4, 3,4,2,21, 3,18,15,21, 3,18,8,15, 3,8,1,6, 3,6,13,8, 3,22,13,6, 3,11,13,19, 3,13,22,19, 3,22,0,19, 3,21,2,18 }; double rhombicosadodecav[]={ -1,-1,-g*q, -1,-1,g*q, -1,1,-g*q, -1,1,g*q, 1,-1,-g*q, 1,-1,g*q, 1,1,-g*q, 1,1,g*q, -g*q,-1,-1, g*q,-1,-1, -g*q,-1,1, g*q,-1,1, -g*q,1,-1, g*q,1,-1, -g*q,1,1, g*q,1,1, -1,-g*q,-1, -1,g*q,-1, 1,-g*q,-1, 1,g*q,-1, -1,-g*q,1, -1,g*q,1, 1,-g*q,1, 1,g*q,1, -q,-g,-j, -q,-g,j, -q,g,-j, -q,g,j, q,-g,-j, q,-g,j, q,g,-j, q,g,j, -j,-q,-g, j,-q,-g, -j,-q,g, j,-q,g, -j,q,-g, j,q,-g, -j,q,g, j,q,g, -g,-j,-q, -g,j,-q, g,-j,-q, g,j,-q, -g,-j,q, -g,j,q, g,-j,q, g,j,q, -(2 g),0,-q, -(2 g),0,q, (2 g),0,-q, (2 g),0,q, -q,-(2 g),0, q,-(2 g),0, -q,(2 g),0, q,(2 g),0, 0,-q,-(2 g), 0,q,-(2 g), 0,-q,(2 g), 0,q,(2 g) }; int rhombicosadodecat[]={ 5,44,58,46,22,20, 5,1,25,49,27,3, 5,57,43,19,17,41, 5,21,23,47,59,45, 5,31,51,29,5,7, 5,10,34,52,32,8, 5,48,24,0,2,26, 5,12,36,54,38,14, 5,6,4,28,50,30, 5,15,39,55,37,13, 5,33,53,35,11,9, 5,40,16,18,42,56, 4,34,44,20,52, 4,44,25,1,58, 4,3,27,45,59, 4,5,1,3,7, 4,25,34,10,49, 4,27,49,14,38, 4,20,22,18,16, 4,18,53,33,42, 4,6,30,43,57, 4,2,57,41,26, 4,4,6,2,0, 4,47,31,7,59, 4,55,39,47,23, 4,5,29,46,58, 4,31,39,15,51, 4,52,16,40,32, 4,12,48,26,36, 4,36,41,17,54, 4,38,54,21,45, 4,21,17,19,23, 4,55,19,43,37, 4,30,50,13,37, 4,33,9,50,28, 4,14,10,8,12, 4,9,11,15,13, 4,11,35,29,51, 4,53,22,46,35, 4,56,42,28,4, 4,24,40,56,0, 4,48,8,32,24, 3,34,25,44, 3,58,1,5, 3,27,38,45, 3,52,20,16, 3,22,53,18, 3,2,6,57, 3,3,59,7, 3,19,55,23, 3,47,39,31, 3,29,35,46, 3,14,49,10, 3,41,36,26, 3,54,17,21, 3,37,43,30, 3,0,56,4, 3,9,13,50, 3,33,28,42, 3,12,8,48, 3,11,51,15, 3,24,32,40 }; double trunccuboctav[]={ -1,-(1 s),-(1 s s), -1,-(1 s),(1 s s), -1,(1 s),-(1 s s), -1,(1 s),(1 s s), 1,-(1 s),-(1 s s), 1,-(1 s),(1 s s), 1,(1 s),-(1 s s), 1,(1 s),(1 s s), -(1 s s),-1,-(1 s), (1 s s),-1,-(1 s), -(1 s s),-1,(1 s), (1 s s),-1,(1 s), -(1 s s),1,-(1 s), (1 s s),1,-(1 s), -(1 s s),1,(1 s), (1 s s),1,(1 s), -(1 s),-(1 s s),-1, -(1 s),(1 s s),-1, (1 s),-(1 s s),-1, (1 s),(1 s s),-1, -(1 s),-(1 s s),1, -(1 s),(1 s s),1, (1 s),-(1 s s),1, (1 s),(1 s s),1, -1,-(1 s s),-(1 s), -1,-(1 s s),(1 s), -1,(1 s s),-(1 s), -1,(1 s s),(1 s), 1,-(1 s s),-(1 s), 1,-(1 s s),(1 s), 1,(1 s s),-(1 s), 1,(1 s s),(1 s), -(1 s),-1,-(1 s s), (1 s),-1,-(1 s s), -(1 s),-1,(1 s s), (1 s),-1,(1 s s), -(1 s),1,-(1 s s), (1 s),1,-(1 s s), -(1 s),1,(1 s s), (1 s),1,(1 s s), -(1 s s),-(1 s),-1, -(1 s s),(1 s),-1, (1 s s),-(1 s),-1, (1 s s),(1 s),-1, -(1 s s),-(1 s),1, -(1 s s),(1 s),1, (1 s s),-(1 s),1, (1 s s),(1 s),1 }; int trunccuboctat[]={ 8,5,1,34,38,3,7,39,35, 8,12,41,45,14,10,44,40,8, 8,37,6,2,36,32,0,4,33, 8,23,31,27,21,17,26,30,19, 8,24,16,20,25,29,22,18,28, 8,43,13,9,42,46,11,15,47, 6,3,38,14,45,21,27, 6,1,25,20,44,10,34, 6,11,46,22,29,5,35, 6,15,39,7,31,23,47, 6,2,26,17,41,12,36, 6,37,13,43,19,30,6, 6,8,40,16,24,0,32, 6,9,33,4,28,18,42, 4,7,3,27,31, 4,38,34,10,14, 4,5,29,25,1, 4,39,15,11,35, 4,36,12,8,32, 4,6,30,26,2, 4,47,23,19,43, 4,40,44,20,16, 4,0,24,28,4, 4,9,13,37,33, 4,41,17,21,45, 4,46,42,18,22 }; double truncicosidodecav[]={ -d,-d,-(3 g), -d,-d,(3 g), -d,d,-(3 g), -d,d,(3 g), d,-d,-(3 g), d,-d,(3 g), d,d,-(3 g), d,d,(3 g), -(3 g),-d,-d, -(3 g),-d,d, -(3 g),d,-d, -(3 g),d,d, (3 g),-d,-d, (3 g),-d,d, (3 g),d,-d, (3 g),d,d, -d,-(3 g),-d, -d,-(3 g),d, -d,(3 g),-d, -d,(3 g),d, d,-(3 g),-d, d,-(3 g),d, d,(3 g),-d, d,(3 g),d, -2*d,-g,-(g q), -2*d,-g,(g q), -2*d,g,-(g q), -2*d,g,(g q), 2*d,-g,-(g q), 2*d,-g,(g q), 2*d,g,-(g q), 2*d,g,(g q), -(g q),-2*d,-g, -(g q),-2*d,g, -(g q),2*d,-g, -(g q),2*d,g, (g q),-2*d,-g, (g q),-2*d,g, (g q),2*d,-g, (g q),2*d,g, -g,-(g q),-2*d, -g,-(g q),2*d, -g,(g q),-2*d, -g,(g q),2*d, g,-(g q),-2*d, g,-(g q),2*d, g,(g q),-2*d, g,(g q),2*d, -d,-q,-(j d), -d,-q,(j d), -d,q,-(j d), -d,q,(j d), d,-q,-(j d), d,-q,(j d), d,q,-(j d), d,q,(j d), -(j d),-d,-q, -(j d),-d,q, -(j d),d,-q, -(j d),d,q, (j d),-d,-q, (j d),-d,q, (j d),d,-q, (j d),d,q, -q,-(j d),-d, -q,-(j d),d, -q,(j d),-d, -q,(j d),d, q,-(j d),-d, q,-(j d),d, q,(j d),-d, q,(j d),d, -(j-1),-2,-(2 g), -(j-1),-2,(2 g), -(j-1),2,-(2 g), -(j-1),2,(2 g), (j-1),-2,-(2 g), (j-1),-2,(2 g), (j-1),2,-(2 g), (j-1),2,(2 g), -(2 g),-(j-1),-2, -(2 g),-(j-1),2, -(2 g),(j-1),-2, -(2 g),(j-1),2, (2 g),-(j-1),-2, (2 g),-(j-1),2, (2 g),(j-1),-2, (2 g),(j-1),2, -2,-(2 g),-(j-1), -2,-(2 g),(j-1), -2,(2 g),-(j-1), -2,(2 g),(j-1), 2,-(2 g),-(j-1), 2,-(2 g),(j-1), 2,(2 g),-(j-1), 2,(2 g),(j-1), -g,-3,-j, -g,-3,j, -g,3,-j, -g,3,j, g,-3,-j, g,-3,j, g,3,-j, g,3,j, -j,-g,-3, -j,-g,3, -j,g,-3, -j,g,3, j,-g,-3, j,-g,3, j,g,-3, j,g,3, -3,-j,-g, -3,-j,g, -3,j,-g, -3,j,g, 3,-j,-g, 3,-j,g, 3,j,-g, 3,j,g }; int truncicosidodecat[]={ 10,44,92,100,52,48,96,88,40,16,20, 10,68,69,117,85,37,13,12,36,84,116, 10,8,9,33,81,113,65,64,112,80,32, 10,21,17,41,89,97,49,53,101,93,45, 10,10,34,82,114,66,67,115,83,35,11, 10,77,29,5,7,31,79,111,63,61,109, 10,90,98,50,54,102,94,46,22,18,42, 10,51,99,91,43,19,23,47,95,103,55, 10,119,71,70,118,86,38,14,15,39,87, 10,74,106,58,56,104,72,24,0,2,26, 10,57,59,107,75,27,3,1,25,73,105, 10,76,108,60,62,110,78,30,6,4,28, 6,44,20,21,45,69,68, 6,63,39,15,13,37,61, 6,12,14,38,62,60,36, 6,80,112,88,96,72,104, 6,16,40,64,65,41,17, 6,34,10,8,32,56,58, 6,9,11,35,59,57,33, 6,114,82,106,74,98,90, 6,101,77,109,85,117,93, 6,116,84,108,76,100,92, 6,75,107,83,115,91,99, 6,7,3,27,51,55,31, 6,43,67,66,42,18,19, 6,23,22,46,70,71,47, 6,103,95,119,87,111,79, 6,118,94,102,78,110,86, 6,50,26,2,6,30,54, 6,0,24,48,52,28,4, 6,1,5,29,53,49,25, 6,113,81,105,73,97,89, 4,20,16,17,21, 4,92,44,68,116, 4,109,61,37,85, 4,69,45,93,117, 4,41,65,113,89, 4,56,32,80,104, 4,10,11,9,8, 4,82,34,58,106, 4,101,53,29,77, 4,42,66,114,90, 4,40,88,112,64, 4,27,75,99,51, 4,107,59,35,83, 4,91,115,67,43, 4,55,103,79,31, 4,47,71,119,95, 4,19,18,22,23, 4,46,94,118,70, 4,14,12,13,15, 4,87,39,63,111, 4,60,108,84,36, 4,110,62,38,86, 4,98,74,26,50, 4,2,0,4,6, 4,1,3,7,5, 4,73,25,49,97, 4,96,48,24,72, 4,100,76,28,52, 4,81,33,57,105, 4,102,54,30,78 }; double snubdodeca1v[]={ -2*aa,-2,2*bb, -2*aa,2,-2*bb, 2*aa,-2,-2*bb, 2*aa,2,2*bb, 2*bb,-2*aa,-2, -2*bb,-2*aa,2, -2*bb,2*aa,-2, 2*bb,2*aa,2, -2,2*bb,-2*aa, 2,-2*bb,-2*aa, -2,-2*bb,2*aa, 2,2*bb,2*aa, -(aa bb*d g),-(-aa*g bb d),(aa*d bb*g-1), -(aa bb*d g),(-aa*g bb d),-(aa*d bb*g-1), (aa bb*d g),-(-aa*g bb d),-(aa*d bb*g-1), (aa bb*d g),(-aa*g bb d),(aa*d bb*g-1), (aa*d bb*g-1),-(aa bb*d g),-(-aa*g bb d), -(aa*d bb*g-1),-(aa bb*d g),(-aa*g bb d), -(aa*d bb*g-1),(aa bb*d g),-(-aa*g bb d), (aa*d bb*g-1),(aa bb*d g),(-aa*g bb d), -(-aa*g bb d),(aa*d bb*g-1),-(aa bb*d g), (-aa*g bb d),-(aa*d bb*g-1),-(aa bb*d g), -(-aa*g bb d),-(aa*d bb*g-1),(aa bb*d g), (-aa*g bb d),(aa*d bb*g-1),(aa bb*d g), -(-aa*d bb*g 1),-(-aa bb*d-g),(aa*g bb-d), -(-aa*d bb*g 1),(-aa bb*d-g),-(aa*g bb-d), (-aa*d bb*g 1),-(-aa bb*d-g),-(aa*g bb-d), (-aa*d bb*g 1),(-aa bb*d-g),(aa*g bb-d), (aa*g bb-d),-(-aa*d bb*g 1),-(-aa bb*d-g), -(aa*g bb-d),-(-aa*d bb*g 1),(-aa bb*d-g), -(aa*g bb-d),(-aa*d bb*g 1),-(-aa bb*d-g), (aa*g bb-d),(-aa*d bb*g 1),(-aa bb*d-g), -(-aa bb*d-g),(aa*g bb-d),-(-aa*d bb*g 1), (-aa bb*d-g),-(aa*g bb-d),-(-aa*d bb*g 1), -(-aa bb*d-g),-(aa*g bb-d),(-aa*d bb*g 1), (-aa bb*d-g),(aa*g bb-d),(-aa*d bb*g 1), -(-aa*d bb*g-1),-(aa-bb*d-g),(aa*g bb d), -(-aa*d bb*g-1),(aa-bb*d-g),-(aa*g bb d), (-aa*d bb*g-1),-(aa-bb*d-g),-(aa*g bb d), (-aa*d bb*g-1),(aa-bb*d-g),(aa*g bb d), (aa*g bb d),-(-aa*d bb*g-1),-(aa-bb*d-g), -(aa*g bb d),-(-aa*d bb*g-1),(aa-bb*d-g), -(aa*g bb d),(-aa*d bb*g-1),-(aa-bb*d-g), (aa*g bb d),(-aa*d bb*g-1),(aa-bb*d-g), -(aa-bb*d-g),(aa*g bb d),-(-aa*d bb*g-1), (aa-bb*d-g),-(aa*g bb d),-(-aa*d bb*g-1), -(aa-bb*d-g),-(aa*g bb d),(-aa*d bb*g-1), (aa-bb*d-g),(aa*g bb d),(-aa*d bb*g-1), -(aa bb*d-g),-(aa*g-bb d),(aa*d bb*g 1), -(aa bb*d-g),(aa*g-bb d),-(aa*d bb*g 1), (aa bb*d-g),-(aa*g-bb d),-(aa*d bb*g 1), (aa bb*d-g),(aa*g-bb d),(aa*d bb*g 1), (aa*d bb*g 1),-(aa bb*d-g),-(aa*g-bb d), -(aa*d bb*g 1),-(aa bb*d-g),(aa*g-bb d), -(aa*d bb*g 1),(aa bb*d-g),-(aa*g-bb d), (aa*d bb*g 1),(aa bb*d-g),(aa*g-bb d), -(aa*g-bb d),(aa*d bb*g 1),-(aa bb*d-g), (aa*g-bb d),-(aa*d bb*g 1),-(aa bb*d-g), -(aa*g-bb d),-(aa*d bb*g 1),(aa bb*d-g), (aa*g-bb d),(aa*d bb*g 1),(aa bb*d-g), }; int snubdodeca1t[]={ 5,7,19,31,43,55, 5,15,27,39,51,3, 5,52,4,16,28,40, 5,46,58,10,22,34, 5,9,21,33,45,57, 5,5,17,29,41,53, 5,2,14,26,38,50, 5,6,18,30,42,54, 5,47,59,11,23,35, 5,8,20,32,44,56, 5,12,24,36,48,0, 5,1,13,25,37,49, 3,7,27,19, 3,19,27,15, 3,7,52,27, 3,52,39,27, 3,4,52,7, 3,31,19,23, 3,40,39,52, 3,58,46,40, 3,58,40,28, 3,9,58,28, 3,9,28,21, 3,21,28,16, 3,21,16,14, 3,14,16,26, 3,26,16,4, 3,46,39,40, 3,51,39,46, 3,34,51,46, 3,51,0,3, 3,58,9,10, 3,12,34,22, 3,12,22,17, 3,24,12,17, 3,5,24,17, 3,54,24,5, 3,6,54,5, 3,17,22,29, 3,22,10,29, 3,33,21,14, 3,2,33,14, 3,49,33,2, 3,1,2,50, 3,1,50,32, 3,5,53,6, 3,24,54,36, 3,36,54,42, 3,36,42,47, 3,47,42,59, 3,42,30,59, 3,59,30,8, 3,8,30,20, 3,20,30,18, 3,20,18,13, 3,13,18,25, 3,32,13,1, 3,2,1,49, 3,44,32,50, 3,4,7,55, 3,26,4,55, 3,38,26,55, 3,38,55,43, 3,38,44,50, 3,32,20,13, 3,38,43,44, 3,44,43,56, 3,56,43,31, 3,8,11,59, 3,11,8,56, 3,11,56,31, 3,11,31,23, 3,23,19,15, 3,23,15,35, 3,35,15,3, 3,35,3,48, 3,48,3,0, 3,47,35,48, 3,47,48,36, 3,0,34,12, 3,0,51,34, 3,10,9,57, 3,10,57,29, 3,29,57,41, 3,41,57,45, 3,41,37,53, 3,49,45,33, 3,45,37,41, 3,37,25,53, 3,25,18,6, 3,25,6,53, 3,49,37,45 }; double snubdodeca2v[]={ 2*aa,-2,2*bb, 2*aa,2,-2*bb, -2*aa,-2,-2*bb, -2*aa,2,2*bb, -2*bb,-2*aa,-2, 2*bb,-2*aa,2, 2*bb,2*aa,-2, -2*bb,2*aa,2, 2,2*bb,-2*aa, -2,-2*bb,-2*aa, 2,-2*bb,2*aa, -2,2*bb,2*aa, (aa bb*d g),-(-aa*g bb d),(aa*d bb*g-1), (aa bb*d g),(-aa*g bb d),-(aa*d bb*g-1), -(aa bb*d g),-(-aa*g bb d),-(aa*d bb*g-1), -(aa bb*d g),(-aa*g bb d),(aa*d bb*g-1), -(aa*d bb*g-1),-(aa bb*d g),-(-aa*g bb d), (aa*d bb*g-1),-(aa bb*d g),(-aa*g bb d), (aa*d bb*g-1),(aa bb*d g),-(-aa*g bb d), -(aa*d bb*g-1),(aa bb*d g),(-aa*g bb d), (-aa*g bb d),(aa*d bb*g-1),-(aa bb*d g), -(-aa*g bb d),-(aa*d bb*g-1),-(aa bb*d g), (-aa*g bb d),-(aa*d bb*g-1),(aa bb*d g), -(-aa*g bb d),(aa*d bb*g-1),(aa bb*d g), (-aa*d bb*g 1),-(-aa bb*d-g),(aa*g bb-d), (-aa*d bb*g 1),(-aa bb*d-g),-(aa*g bb-d), -(-aa*d bb*g 1),-(-aa bb*d-g),-(aa*g bb-d), -(-aa*d bb*g 1),(-aa bb*d-g),(aa*g bb-d), -(aa*g bb-d),-(-aa*d bb*g 1),-(-aa bb*d-g), (aa*g bb-d),-(-aa*d bb*g 1),(-aa bb*d-g), (aa*g bb-d),(-aa*d bb*g 1),-(-aa bb*d-g), -(aa*g bb-d),(-aa*d bb*g 1),(-aa bb*d-g), (-aa bb*d-g),(aa*g bb-d),-(-aa*d bb*g 1), -(-aa bb*d-g),-(aa*g bb-d),-(-aa*d bb*g 1), (-aa bb*d-g),-(aa*g bb-d),(-aa*d bb*g 1), -(-aa bb*d-g),(aa*g bb-d),(-aa*d bb*g 1), (-aa*d bb*g-1),-(aa-bb*d-g),(aa*g bb d), (-aa*d bb*g-1),(aa-bb*d-g),-(aa*g bb d), -(-aa*d bb*g-1),-(aa-bb*d-g),-(aa*g bb d), -(-aa*d bb*g-1),(aa-bb*d-g),(aa*g bb d), -(aa*g bb d),-(-aa*d bb*g-1),-(aa-bb*d-g), (aa*g bb d),-(-aa*d bb*g-1),(aa-bb*d-g), (aa*g bb d),(-aa*d bb*g-1),-(aa-bb*d-g), -(aa*g bb d),(-aa*d bb*g-1),(aa-bb*d-g), (aa-bb*d-g),(aa*g bb d),-(-aa*d bb*g-1), -(aa-bb*d-g),-(aa*g bb d),-(-aa*d bb*g-1), (aa-bb*d-g),-(aa*g bb d),(-aa*d bb*g-1), -(aa-bb*d-g),(aa*g bb d),(-aa*d bb*g-1), (aa bb*d-g),-(aa*g-bb d),(aa*d bb*g 1), (aa bb*d-g),(aa*g-bb d),-(aa*d bb*g 1), -(aa bb*d-g),-(aa*g-bb d),-(aa*d bb*g 1), -(aa bb*d-g),(aa*g-bb d),(aa*d bb*g 1), -(aa*d bb*g 1),-(aa bb*d-g),-(aa*g-bb d), (aa*d bb*g 1),-(aa bb*d-g),(aa*g-bb d), (aa*d bb*g 1),(aa bb*d-g),-(aa*g-bb d), -(aa*d bb*g 1),(aa bb*d-g),(aa*g-bb d), (aa*g-bb d),(aa*d bb*g 1),-(aa bb*d-g), -(aa*g-bb d),-(aa*d bb*g 1),-(aa bb*d-g), (aa*g-bb d),-(aa*d bb*g 1),(aa bb*d-g), -(aa*g-bb d),(aa*d bb*g 1),(aa bb*d-g), }; int snubdodeca2t[]={ 5,7,55,43,31,19, 5,15,3,51,39,27, 5,52,40,28,16,4, 5,46,34,22,10,58, 5,9,57,45,33,21, 5,5,53,41,29,17, 5,2,50,38,26,14, 5,6,54,42,30,18, 5,47,35,23,11,59, 5,8,56,44,32,20, 5,12,0,48,36,24, 5,1,49,37,25,13, 3,7,19,27, 3,19,15,27, 3,7,27,52, 3,52,27,39, 3,4,7,52, 3,31,23,19, 3,40,52,39, 3,58,40,46, 3,58,28,40, 3,9,28,58, 3,9,21,28, 3,21,16,28, 3,21,14,16, 3,14,26,16, 3,26,4,16, 3,46,40,39, 3,51,46,39, 3,34,46,51, 3,51,3,0, 3,58,10,9, 3,12,22,34, 3,12,17,22, 3,24,17,12, 3,5,17,24, 3,54,5,24, 3,6,5,54, 3,17,29,22, 3,22,29,10, 3,33,14,21, 3,2,14,33, 3,49,2,33, 3,1,50,2, 3,1,32,50, 3,5,6,53, 3,24,36,54, 3,36,42,54, 3,36,47,42, 3,47,59,42, 3,42,59,30, 3,59,8,30, 3,8,20,30, 3,20,18,30, 3,20,13,18, 3,13,25,18, 3,32,1,13, 3,2,49,1, 3,44,50,32, 3,4,55,7, 3,26,55,4, 3,38,55,26, 3,38,43,55, 3,38,50,44, 3,32,13,20, 3,38,44,43, 3,44,56,43, 3,56,31,43, 3,8,59,11, 3,11,56,8, 3,11,31,56, 3,11,23,31, 3,23,15,19, 3,23,35,15, 3,35,3,15, 3,35,48,3, 3,48,0,3, 3,47,48,35, 3,47,36,48, 3,0,12,34, 3,0,34,51, 3,10,57,9, 3,10,29,57, 3,29,41,57, 3,41,45,57, 3,41,53,37, 3,49,33,45, 3,45,41,37, 3,37,53,25, 3,25,6,18, 3,25,53,6, 3,49,45,37 }; /*-!,-@,#, -!,@,-#, !,-@,-#, !,@,#, #,-!,-@, -#,-!,@, -#,!,-@, #,!,@, -@,#,-!, @,-#,-!, -@,-#,!, @,#,!, !,-@,#, !,@,-#, -!,-@,-#, -!,@,#, -#,-!,-@, #,-!,@, #,!,-@, -#,!,@, @,#,-!, -@,-#,-!, @,-#,!, -@,#,!,*/ boolean DEBUG=/*/true;/*/false;/**/ public void paint(Graphics g) { g.setColor(new Color(0xffffff)); g.fillRect(0, 0, 200, 200); double n=Math.random(); /* if(n<.2) drawfig(g, tetrav, tetrat, 3); else if(n<.4) drawfig(g, hexav, hexat, 4); else if(n<.6) drawfig(g, octav, octat, 3); else if(n<.8) drawfig(g, dodecav, dodecat, 5); else drawfig(g, icosav, icosat, 3); */ //drawfig(g, tetrav, tetrat, 3); //drawfig(g, hexav, hexat, 4); //drawfig(g, octav, octat, 3); //drawfig(g, dodecav, dodecat, 5); //drawfig(g, icosav, icosat, 3); //drawfig(g, icosidodecav, icosidodecat, -1); //drawfig(g, cuboctav, cuboctat, -1); //drawfig(g, truncicosav, truncicosat, -1); //drawfig(g, trunctetrav, trunctetrat, -1); //drawfig(g, trunchexav, trunchexat, -1); //drawfig(g, truncoctav, truncoctat, -1); //drawfig(g, truncdodecav, truncdodecat, -1); //drawfig(g, rhombicuboctav, rhombicuboctat, -1); //drawfig(g, snubhexa1v, snubhexa1t, -1); //drawfig(g, snubhexa2v, snubhexa2t, -1); //drawfig(g, rhombicosadodecav, rhombicosadodecat, -1); //drawfig(g, trunccuboctav, trunccuboctat, -1); //drawfig(g, truncicosidodecav, truncicosidodecat, -1); //drawfig(g, snubdodeca1v, snubdodeca1t, -1); drawfig(g, snubdodeca2v, snubdodeca2t, -1); } void drawfig(Graphics g, double vs[], int ts[], int m) { int z=m, y=m; if(m==-1) m=1; double tr[]=randmat(); for(int back=(DEBUG?1:-1);back<=1;back =2) for(int t=0;t*m<ts.length; t) { if(z==-1) { y=(int)ts[t]; t; } double f, td[]; double a1=vs[ts[t*m ]*3], a2=vs[ts[t*m ]*3 1], a3=vs[ts[t*m ]*3 2]; f=1/Math.sqrt(a1*a1 a2*a2 a3*a3); a1*=f; a2*=f; a3*=f; td=trans(a1, a2, a3, tr); a1=td[0]; a2=td[1]; a3=td[2]; double b1=vs[ts[t*m 1]*3], b2=vs[ts[t*m 1]*3 1], b3=vs[ts[t*m 1]*3 2]; f=1/Math.sqrt(b1*b1 b2*b2 b3*b3); b1*=f; b2*=f; b3*=f; td=trans(b1, b2, b3, tr); b1=td[0]; b2=td[1]; b3=td[2]; double c1=vs[ts[t*m 2]*3], c2=vs[ts[t*m 2]*3 1], c3=vs[ts[t*m 2]*3 2]; f=1/Math.sqrt(c1*c1 c2*c2 c3*c3); c1*=f; c2*=f; c3*=f; td=trans(c1, c2, c3, tr); c1=td[0]; c2=td[1]; c3=td[2]; double d1=b1-a1, d2=b2-a2, d3=b3-a3; double e1=c1-a1, e2=c2-a2, e3=c3-a3; double f1=e2*d3-d2*e3, f2=e3*d1-d3*e1, f3=e1*d2-d1*e2; double da1=a1/(4 a3), da2=a2/(4 a3), db1=b1/(4 b3)-da1, db2=b2/(4 b3)-da2, dc1=c1/(4 c3)-da1, dc2=c2/(4 c3)-da2; if(back*(db1*dc2-dc1*db2)/*f3*/>0) { g.setColor(new Color((float)Math.random(), (float)Math.random(), (float)Math.random(), (float)(/*.85 .15*/ .75 .25*Math.random())/*(float)(back<0?.90:0.90)*/)); int xa[]=new int[y], ya[]=new int[y]; xa[0]=(int)(a1*3/(4 a3)*100 100); xa[1]=(int)(b1*3/(4 b3)*100 100); xa[2]=(int)(c1*3/(4 c3)*100 100); ya[0]=(int)(a2*3/(4 a3)*100 100); ya[1]=(int)(b2*3/(4 b3)*100 100); ya[2]=(int)(c2*3/(4 c3)*100 100); for(int w=0/*3*/;w<y; w) { a1=vs[ts[t*m w]*3]; a2=vs[ts[t*m w]*3 1]; a3=vs[ts[t*m w]*3 2]; f=1/Math.sqrt(a1*a1 a2*a2 a3*a3); a1*=f; a2*=f; a3*=f; td=trans(a1, a2, a3, tr); a1=td[0]; a2=td[1]; a3=td[2]; xa[w]=(int)(a1*3/(4 a3)*100 100); ya[w]=(int)(a2*3/(4 a3)*100 100); } g.fillPolygon(xa, ya, y); }if(z==-1) t =y-1; }if(!DEBUG)return; g.setColor(new Color(0, 0, 0)); //g.drawString("Hello", 10, 10); for(int num=0;num<vs.length/3; num) { double a1=vs[num*3], a2=vs[num*3 1], a3=vs[num*3 2]; double f, td[]; f=1/Math.sqrt(a1*a1 a2*a2 a3*a3); a1*=f; a2*=f; a3*=f; td=trans(a1, a2, a3, tr); a1=td[0]; a2=td[1]; a3=td[2]; //double da1=a1/(4 a3), da2=a2/(4 a3); if(a3<0){//1* db1*dc2-dc1*db2 /*f3*/<0) { /*a3=0;*/ g.drawString("" num, (int)(a1*3/(4 a3)*100 100), (int)(a2*3/(4 a3)*100 100)); g.fillRect((int)(a1*3/(4 a3)*100 100)-1, (int)(a2*3/(4 a3)*100 100)-1, 3, 3); } } } double[] randmat() { double[] r=new double[9]; double s, x, y, z; int i, j; for(i=0;i<3; i) { x=Math.random()*2-1; y=Math.random()*2-1; z=Math.random()*2-1; s=x*x y*y z*z; if(s>1) { --i; continue; } for(j=0;j<i; j) { s=x*r[j*3 ] y*r[j*3 1] z*r[j*3 2]; x-=s*r[j*3 ]; y-=s*r[j*3 1]; z-=s*r[j*3 2]; } s=x*x y*y z*z; if(s==0) { --i; continue; } s=Math.sqrt(s); x/=s; y/=s; z/=s; r[i*3 ]=x; r[i*3 1]=y; r[i*3 2]=z; } if(r[0]*r[4]*r[8] r[1]*r[5]*r[6] r[2]*r[3]*r[7]-r[0]*r[5]*r[7]-r[1]*r[3]*r[8]-r[2]*r[4]*r[6]<0) { r[0]=-r[0]; r[1]=-r[1]; r[2]=-r[2]; } return(r); } double[] trans(double x, double y, double z, double[] t) { return(new double[]{x*t[0] y*t[1] z*t[2], x*t[3] y*t[4] z*t[5], x*t[6] y*t[7] z*t[8]}); } }
Graph.html
editIf I use this again, I'll probably convert it to c, first. Probably easier than trying to remember how to compile java, anyway.
<html><head><title>Graph</title><body bgcolor=#fe07f2> <applet width=201 height=201 code="Graph.class" codebase="."></applet> </html>
Graph.java
editimport java.awt.*; import java.applet.*; public class Graph extends Applet { double minx=-10, miny=-10, maxx=10, maxy=10, stex=1, stey=1; double addx, addy, scax, scay, delx, dely; int sx, sy; float cr, cg, cb; float gr[]; void drawfunction(function fx, function fy, double st, double en) { double x, y, dx, dy, tx, ty, a, s; for(a=st;a<=en;) { drawdot(xinpd(tx=fx.y(a)), yinpd(ty=fy.y(a))); x=fx.dydx(a)*scax; y=fy.dydx(a)*scay; s=Math.sqrt(x*x y*y); do { dx=tx-fx.y(a .1/s); dy=ty-fy.y(a .1/s); if(dx*dx*scax*scax dy*dy*scay*scay<.127201965) break; s*=2; } while(true); a =.1/s; } } void drawfunction(function f) { double x, y, s; for(x=minx;x<maxx;) { drawdot(xinpd(x), yinpd(y=f.y(x))); s=f.dydx(x)*scay/scax; s=Math.sqrt(1 s*s); if(y>maxy-dely*1||y<miny dely*1||y!=y||s!=s) s=1; //if(s>1000) s=1000; x =.1/scax/s; } } void drawgrid() { double z; for(z= stey;z<=maxy;z =stey) drawhorz(yinp(z)); for(z=-stey;z>=miny;z-=stey) drawhorz(yinp(z)); for(z= stex;z<=maxx;z =stex) drawvert(xinp(z)); for(z=-stex;z>=minx;z-=stex) drawvert(xinp(z)); } void drawaxes() { drawhorz(yinp(0)); drawvert(xinp(0)); } void drawhorz(int y) { int x; for(x=0;x<sx; x) { subp(x, y-1, cr/2, cg/2, cb/2); subp(x, y , cr , cg , cb ); subp(x, y 1, cr/2, cg/2, cb/2); } } void drawvert(int x) { int y; for(y=0;y<sy; y) { subp(x-1, y, cr/2, cg/2, cb/2); subp(x , y, cr , cg , cb ); subp(x 1, y, cr/2, cg/2, cb/2); } } void drawdot(double x, double y) { if(x!=x||y!=y) return; int ix=(int)x, iy=(int)y; float ox=(float)(1 ix-x), oy=(float)(1 iy-y); float px=1-ox, py=1-oy; subp(ix-1, iy-1, cr*ox*oy*.05f, cg*ox*oy*.05f, cb*ox*oy*.05f); subp(ix , iy-1, cr *oy*.05f, cg *oy*.05f, cb *oy*.05f); subp(ix 1, iy-1, cr*px*oy*.05f, cg*px*oy*.05f, cb*px*oy*.05f); subp(ix-1, iy , cr*ox *.05f, cg*ox *.05f, cb*ox *.05f); subp(ix , iy , cr *.05f, cg *.05f, cb *.05f); subp(ix 1, iy , cr*px *.05f, cg*px *.05f, cb*px *.05f); subp(ix-1, iy 1, cr*ox*py*.05f, cg*ox*py*.05f, cb*ox*py*.05f); subp(ix , iy 1, cr *py*.05f, cg *py*.05f, cb *py*.05f); subp(ix 1, iy 1, cr*px*py*.05f, cg*px*py*.05f, cb*px*py*.05f); } int xinp(double x) { return((int)((x addx)*scax)); } int yinp(double y) { return((int)((y addy)*scay)); } double xinpd(double x) { return(((x addx)*scax)); } double yinpd(double y) { return(((y addy)*scay)); } void subp(int x, int y, float r, float g, float b) { if(x<0||y<0||x>=sx||y>=sy) return; setp(x, y, getpr(x, y)-r, getpg(x, y)-g, getpb(x, y)-b); } void fixp(int x, int y) { if(x<0||y<0||x>=sx||y>=sy) return; float r=getpr(x, y), g=getpg(x, y), b=getpb(x, y); if(r<=0) r=0; else if(r>=1) r=1; if(g<=0) g=0; else if(g>=1) g=1; if(b<=0) b=0; else if(b>=1) b=1; setp(x, y, r, g, b); } void setp(int x, int y, float r, float g, float b) { if(x<0||y<0||x>=sx||y>=sy) return; gr[(x y*sx)*3]=r; gr[(x y*sx)*3 1]=g; gr[(x y*sx)*3 2]=b; } float getpr(int x, int y) { return(gr[(x y*sx)*3]); } float getpg(int x, int y) { return(gr[(x y*sx)*3 1]); } float getpb(int x, int y) { return(gr[(x y*sx)*3 2]); } void setc(float r, float g, float b) { cr=r; cg=g; cb=b; } void cals() { delx=maxx-minx; dely=miny-maxy; scax=(sx-1)/delx; scay=(sy-1)/dely; addx=-minx .5/scax; addy=-maxy .5/scay; } public void init() { int x, y; sx=getSize().width; sy=getSize().height; gr=new float[sx*sy*3]; cals(); for(y=0;y<sy; y) for(x=0;x<sx; x) setp(x, y, 1, 1, 1); minx=-10/3.; miny=-10/3.; maxx=10/3.; maxy=10/3.; stex=1; stey=1; cals(); setc(.6f, .6f, .6f); drawfunction(new erf(1)); setc(.1f, .8f, .8f); drawfunction(new erf(2)); setc(.8f, .1f, .8f); drawfunction(new erf(3)); setc(.8f, .8f, .1f); drawfunction(new erf(4)); setc(.1f, .1f, .8f); drawfunction(new erf(5)); /* setc(.8f, .1f, .1f); drawfunction(new expinvsqlau(5)); setc(.1f, .8f, .1f); drawfunction(new expinvsqlau(6)); setc(.1f, .1f, .1f); drawfunction(new expinvsqlau(7)); setc(.6f, .1f, .81f); drawfunction(new expinvsqlau(50));*/ /* minx=-1.25; miny=-1.25; maxx=1.25; maxy=1.25; stex=.1; stey=.1; cals(); setc(.025f, .025f, .025f); drawgrid(); stex=1; stey=1; setc(.3f, .6f, .8f); drawfunction(new fresC(), new fresS(), -2, 2); minx=-50; miny=-1.25; maxx=5; maxy=1.25; stex=1; stey=1; cals(); setc(.1f, .8f, .8f); drawfunction(new fresS()); setc(.8f, .1f, .8f); drawfunction(new fresC()); minx=-1.5; miny=-2.5; maxx=3.5; maxy=2.5; stex=1; stey=1; cals(); setc(.3f, .6f, .8f); drawfunction(new paray(new arecip(2)), new parax(new arecip(2)), .05, 50); minx=-2.5; miny=-1.5; maxx=2.5; maxy=3.5; stex=1; stey=1; cals(); setc(.6f, .6f, .6f); drawfunction(new expinvsq()); setc(.1f, .8f, .8f); drawfunction(new expinvsqlau(1)); setc(.8f, .1f, .8f); drawfunction(new expinvsqlau(2)); setc(.8f, .8f, .1f); drawfunction(new expinvsqlau(3)); setc(.1f, .1f, .8f); drawfunction(new expinvsqlau(4)); setc(.8f, .1f, .1f); drawfunction(new expinvsqlau(5)); setc(.1f, .8f, .1f); drawfunction(new expinvsqlau(6)); setc(.1f, .1f, .1f); drawfunction(new expinvsqlau(7)); setc(.6f, .1f, .81f); drawfunction(new expinvsqlau(50)); double ax=0, ay=0;//double ax=new multisin().y(123), ay=new multicos().y(123); minx=ax-5/3.; miny=ay-5/3.; maxx=ax 5/3.; maxy=ay 5/3.; stex=.1; stey=.1; cals(); setc(.025f, .025f, .025f); drawgrid(); stex=1; stey=1; setc(.3f, .6f, .8f); drawfunction(new multisin(), new multicos(), -3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825, 3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825); minx=-10; miny=-10; maxx=10; maxy=10; stex=1; stey=1; cals(); setc(.6f, .6f, .6f); drawfunction(new sin()); setc(.1f, .8f, .8f); drawfunction(new sintay(1)); setc(.8f, .1f, .8f); drawfunction(new sintay(2)); setc(.8f, .8f, .1f); drawfunction(new sintay(3)); setc(.1f, .1f, .8f); drawfunction(new sintay(4)); setc(.8f, .1f, .1f); drawfunction(new sintay(5)); setc(.1f, .8f, .1f); drawfunction(new sintay(6)); setc(.1f, .1f, .1f); drawfunction(new sintay(7)); minx=-2.5; miny=-.5; maxx=2.5; maxy=4.5; stex=1; stey=1; cals(); setc(.3f, .6f, .8f); drawfunction(new expinvsq()); minx=-2.5; miny=-.5; maxx=2.5; maxy=4.5; stex=1; stey=1; cals(); setc(.3f, .6f, .8f); drawfunction(new expinv()); minx=-1; miny=-7; maxx=9; maxy=3; stex=1; stey=1; cals(); setc(.3f, .6f, .8f); drawfunction(new ln()); minx=-5; miny=-1; maxx=5; maxy=9; stex=1; stey=1; cals(); setc(.3f, .6f, .8f); drawfunction(new exp()); minx=-5; miny=-5; maxx=5; maxy=5; stex=1; stey=1; cals(); setc(.1f, .8f, .8f); drawfunction(new sinh()); setc(.8f, .1f, .8f); drawfunction(new cosh()); setc(.8f, .8f, .1f); drawfunction(new tanh()); minx=-5; miny=-5; maxx=5; maxy=5; stex=1; stey=1; cals(); setc(.1f, .8f, .8f); drawfunction(new csch()); setc(.8f, .1f, .8f); drawfunction(new sech()); setc(.8f, .8f, .1f); drawfunction(new coth()); */ setc(.8f, .8f, .8f); drawaxes(); setc(.1f, .1f, .1f); drawgrid(); for(y=0;y<sy; y) for(x=0;x<sx; x) fixp(x, y); } public void paint(Graphics g) { int x, y; for(y=0;y<sy; y) for(x=0;x<sx; x) { g.setColor(new Color(gr[(x y*sx)*3], gr[(x y*sx)*3 1], gr[(x y*sx)*3 2])); g.fillRect(x, y, 1, 1); } } } abstract class function { abstract double y(double x); abstract double dydx(double x); } class sinh extends function { double y(double x) { return((Math.exp(x)-Math.exp(-x))/2); } double dydx(double x) { return((Math.exp(x) Math.exp(-x))/2); } } class cosh extends function { double y(double x) { return((Math.exp(x) Math.exp(-x))/2); } double dydx(double x) { return((Math.exp(x)-Math.exp(-x))/2); } } class tanh extends function { double y(double x) { return((Math.exp(x)-Math.exp(-x))/(Math.exp(x) Math.exp(-x))); } double dydx(double x) { return(1-y(x)*y(x)); } } class csch extends function { double y(double x) { return(1/((Math.exp(x)-Math.exp(-x))/2)); } double dydx(double x) { return(-((Math.exp(x) Math.exp(-x))/2)*y(x)*y(x)); } } class sech extends function { double y(double x) { return(1/((Math.exp(x) Math.exp(-x))/2)); } double dydx(double x) { return(-((Math.exp(x)-Math.exp(-x))/2)*y(x)*y(x)); } } class coth extends function { double y(double x) { return(1/((Math.exp(x)-Math.exp(-x))/(Math.exp(x) Math.exp(-x)))); } double dydx(double x) { return(1-y(x)*y(x)); } } class exp extends function { double y(double x) { return(Math.exp(x)); } double dydx(double x) { return(Math.exp(x)); } } class ln extends function { double y(double x) { return(Math.log(x)); } double dydx(double x) { return(1/x); } } class expinv extends function { double y(double x) { return(Math.exp(-1/x)); } double dydx(double x) { return(Math.exp(-1/x)/x/x); } } class expinvsq extends function { double y(double x) { return(Math.exp(-1/x/x)); } double dydx(double x) { return(2*Math.exp(-1/x/x)/x/x/x); } } class sin extends function { double y(double x) { return(Math.sin(x)); } double dydx(double x) { return(Math.cos(x)); } } class sintay extends function { int n; sintay(int nn) { n=nn; } double y(double x) { double f=1, r=0, t; int j, k=1, i; for(j=0;j<n; j) { for(i=0,t=1;i<k; i) t*=x; r =t*f; k; f/=k; k; f/=-k; } return(r); } double dydx(double x) { double f=1, r=0, t; int j, k=1, i; for(j=0;j<n; j) { for(i=0,t=1;i<k-1; i) t*=x; r =t*f*k; k; f/=k; k; f/=-k; } return(r); } } /* class multisin extends function { double y(double x) { double r=0, f=1; int p=2; for(;p<100; p) if(isp(p)) { r =Math.sin(x*p)*p*f; f/=-1.1; } return(r); } boolean isp(int p) { for(int x=2;x<p; x) if(p/x*x==p) return(false); return(true); } double dydx(double x) { double r=0, f=1; int p=2; for(;p<100; p) if(isp(p)) { r =Math.cos(x*p)*p*p*f; f/=-1.1; } return(r); } } class multicos extends function { double y(double x) { double r=0, f=1; int p=2; for(;p<100; p) if(isp(p)) { r =Math.cos(x*p)*p*f; f/=-1.1; } return(r); } boolean isp(int p) { for(int x=2;x<p; x) if(p/x*x==p) return(false); return(true); } double dydx(double x) { double r=0, f=1; int p=2; for(;p<100; p) if(isp(p)) { r-=Math.sin(x*p)*p*p*f; f/=-1.1; } return(r); } } */ class multisin extends function { double y(double x) { double r=0, f=1; int p=1, q=-1; for(;p<100000;q-=(p-=q)) { r =Math.sin(x*p)/q; f/=-2; } return(r); } double dydx(double x) { double r=0, f=1; int p=1, q=-1; for(;p<100000;q-=(p-=q)) { r =Math.cos(x*p)*p/q; f/=-2; } return(r); } } class multicos extends function { double y(double x) { double r=0, f=1; int p=1, q=-1; for(;p<100000;q-=(p-=q)) { r =Math.cos(x*p)/q; f/=-2; } return(r); } double dydx(double x) { double r=0, f=1; int p=1, q=-1; for(;p<100000;q-=(p-=q)) { r-=Math.sin(x*p)*p/q; f/=-2; } return(r); } } class parax extends function { function r; parax(function rr) { r=rr; } double y(double x) { return(r.y(x)*Math.sin(x)); } double dydx(double x) { return(r.dydx(x)*Math.sin(x) r.y(x)*Math.cos(x)); } } class paray extends function { function r; paray(function rr) { r=rr; } double y(double x) { return(r.y(x)*Math.cos(x)); } double dydx(double x) { return(r.dydx(x)*Math.cos(x)-r.y(x)*Math.sin(x)); } } class expinvsqlau extends function { int n; expinvsqlau(int nn) { n=nn; } double y(double x) { double f=1, r=0, t; int j, k=0, i; for(j=0;j<n 1; j) { for(i=0,t=1;i<k; i) t/=-x*x; r =t*f; k; f/=k; } return(r); } double dydx(double x) { double f=1, r=0, t; int j, k=0, i; for(j=0;j<n 1; j) { for(i=0,t=1;i<k; i) t/=-x*x; r =-2*j*t*f/x; k; f/=k; } return(r); } } class recip extends function { double y(double x) { return(1/x); } double dydx(double x) { return(-1/x/x); } } class arecip extends function { double a; arecip(double aa) { a=aa; } double y(double x) { return(a/x); } double dydx(double x) { return(-a/x/x); } } class fresS extends function { double y(double x) { double t=0, x4=-x*x*x*x, b=x*x*x, p=-10; for(int n=0;(t-p>.00001||p-t>.00001)&&n<1000; n) { p=t; t =b/(4*n 3); b*=x4/((2*n 2)*(2*n 3)); } return(t); } double dydx(double x) { return(Math.sin(x*x)); } } class fresC extends function { double y(double x) { double t=0, x4=-x*x*x*x, b=x, p=-10; for(int n=0;(t-p>.00001||p-t>.00001)&&n<1000; n) { p=t; t =b/(4*n 1); b*=x4/((2*n 1)*(2*n 2)); } return(t); } double dydx(double x) { return(Math.cos(x*x)); } } class erf extends function { int e; double w=1/Math.sqrt(3.141592653589793238462643383); erf(int ee) { e=ee; for(;ee>1;--ee) w*=ee; } double y(double x) { double t=0, x4=-Math.pow(x, e), b=x*w, p=-10; for(int n=0;(t-p>.00001||p-t>.00001)&&n<1000; n) { p=t; t =b/(e*n 1); b*=x4/(n 1); } return(t); } double dydx(double x) { return(w*Math.exp(-Math.pow(x, e))); } } class check extends function { erf a=new erf(3); double y(double x) { return(1 (a.y(x .001)-a.y(x-.001))*500-a.dydx(x)); } double dydx(double x) { return(0); } }