The up quark or u quark (symbol: u) is the lightest of all quarks, a type of elementary particle, and a significant constituent of matter. It, along with the down quark, forms the neutrons (one up quark, two down quarks) and protons (two up quarks, one down quark) of atomic nuclei. It is part of the first generation of matter, has an electric charge of 2/3 e and a bare mass of 2.2 0.5
−0.4
 MeV/c2
.[1] Like all quarks, the up quark is an elementary fermion with spin 1/2, and experiences all four fundamental interactions: gravitation, electromagnetism, weak interactions, and strong interactions. The antiparticle of the up quark is the up antiquark (sometimes called antiup quark or simply antiup), which differs from it only in that some of its properties, such as charge have equal magnitude but opposite sign.

Up quark
Compositionelementary particle
Statisticsfermionic
Familyquark
Generationfirst
Interactionsstrong, weak, electromagnetic, gravity
Symbol
u
Antiparticleup antiquark (
u
)
TheorizedMurray Gell-Mann (1964)
George Zweig (1964)
DiscoveredSLAC (1968)
Mass2.2 0.5
−0.4
 MeV/c2
[1]
Decays intostable or down quark positron electron neutrino
Electric charge 2/3 e
Color chargeYes
Spin1/2 ħ
Weak isospinLH: 1/2, RH: 0
Weak hyperchargeLH: 1/3, RH: 4/3

Its existence (along with that of the down and strange quarks) was postulated in 1964 by Murray Gell-Mann and George Zweig to explain the Eightfold Way classification scheme of hadrons. The up quark was first observed by experiments at the Stanford Linear Accelerator Center in 1968.

History

edit

In the beginnings of particle physics (first half of the 20th century), hadrons such as protons, neutrons and pions were thought to be elementary particles. However, as new hadrons were discovered, the 'particle zoo' grew from a few particles in the early 1930s and 1940s to several dozens of them in the 1950s. The relationships between each of them were unclear until 1961, when Murray Gell-Mann[2] and Yuval Ne'eman[3] (independently of each other) proposed a hadron classification scheme called the Eightfold Way, or in more technical terms, SU(3) flavor symmetry.

This classification scheme organized the hadrons into isospin multiplets, but the physical basis behind it was still unclear. In 1964, Gell-Mann[4] and George Zweig[5][6] (independently of each other) proposed the quark model, then consisting only of up, down, and strange quarks.[7] However, while the quark model explained the Eightfold Way, no direct evidence of the existence of quarks was found until 1968 at the Stanford Linear Accelerator Center.[8][9] Deep inelastic scattering experiments indicated that protons had substructure, and that protons made of three more-fundamental particles explained the data (thus confirming the quark model).[10]

At first people were reluctant to describe the three bodies as quarks, instead preferring Richard Feynman's parton description,[11][12][13] but over time the quark theory became accepted (see November Revolution).[14]

Mass

edit

Despite being extremely common, the bare mass of the up quark is not well determined, but probably lies between 1.8 and 3.0 MeV/c2.[15] Lattice QCD calculations give a more precise value: 2.01±0.14 MeV/c2.[16]

When found in mesons (particles made of one quark and one antiquark) or baryons (particles made of three quarks), the 'effective mass' (or 'dressed' mass) of quarks becomes greater because of the binding energy caused by the gluon field between each quark (see mass–energy equivalence). The bare mass of up quarks is so light, it cannot be straightforwardly calculated because relativistic effects have to be taken into account.

See also

edit

References

edit
  1. ^ a b M. Tanabashi et al. (Particle Data Group) (2018). "Review of Particle Physics". Physical Review D. 98 (3): 1–708. Bibcode:2018PhRvD..98c0001T. doi:10.1103/PhysRevD.98.030001. hdl:10044/1/68623. PMID 10020536.1-708&rft.date=2018&rft_id=info:hdl/10044/1/68623&rft_id=info:pmid/10020536&rft_id=info:doi/10.1103/PhysRevD.98.030001&rft_id=info:bibcode/2018PhRvD..98c0001T&rft.au=M. Tanabashi et al. (Particle Data Group)&rft_id=http://pdglive.lbl.gov/DataBlock.action?node=Q123UM&rfr_id=info:sid/en.wikipedia.org:Up quark" class="Z3988">
  2. ^ M. Gell-Mann (2000) [1964]. "The Eightfold Way: A theory of strong interaction symmetry". In M. Gell-Mann, Y. Ne'eman (ed.). The Eightfold Way. Westview Press. p. 11. ISBN 978-0-7382-0299-0.
    Original: M. Gell-Mann (1961). "The Eightfold Way: A theory of strong interaction symmetry". Synchrotron Laboratory Report CTSL-20. California Institute of Technology.
  3. ^ Y. Ne'eman (2000) [1964]. "Derivation of strong interactions from gauge invariance". In M. Gell-Mann, Y. Ne'eman (ed.). The Eightfold Way. Westview Press. ISBN 978-0-7382-0299-0.
    Original Y. Ne'eman (1961). "Derivation of strong interactions from gauge invariance". Nuclear Physics. 26 (2): 222–229. Bibcode:1961NucPh..26..222N. doi:10.1016/0029-5582(61)90134-1.222-229&rft.date=1961&rft_id=info:doi/10.1016/0029-5582(61)90134-1&rft_id=info:bibcode/1961NucPh..26..222N&rft.au=Y. Ne'eman&rfr_id=info:sid/en.wikipedia.org:Up quark" class="Z3988">
  4. ^ M. Gell-Mann (1964). "A Schematic Model of Baryons and Mesons". Physics Letters. 8 (3): 214–215. Bibcode:1964PhL.....8..214G. doi:10.1016/S0031-9163(64)92001-3.214-215&rft.date=1964&rft_id=info:doi/10.1016/S0031-9163(64)92001-3&rft_id=info:bibcode/1964PhL.....8..214G&rft.au=M. Gell-Mann&rfr_id=info:sid/en.wikipedia.org:Up quark" class="Z3988">
  5. ^ G. Zweig (1964). "An SU(3) Model for Strong Interaction Symmetry and its Breaking". Cern-Th-401. doi:10.17181/CERN-TH-401.
  6. ^ G. Zweig (1964). "An SU(3) Model for Strong Interaction Symmetry and its Breaking: II". Cern-Th-412. doi:10.17181/CERN-TH-412.
  7. ^ B. Carithers, P. Grannis (1995). "Discovery of the Top Quark" (PDF). Beam Line. 25 (3): 4–16. Retrieved 2008-09-23.4-16&rft.date=1995&rft.au=B. Carithers, P. Grannis&rft_id=http://www.slac.stanford.edu/pubs/beamline/25/3/25-3-carithers.pdf&rfr_id=info:sid/en.wikipedia.org:Up quark" class="Z3988">
  8. ^ Bloom, E. D.; Coward, D.; Destaebler, H.; Drees, J.; Miller, G.; Mo, L.; Taylor, R.; Breidenbach, M.; et al. (1969). "High-Energy Inelastic ep Scattering at 6° and 10°". Physical Review Letters. 23 (16): 930–934. Bibcode:1969PhRvL..23..930B. doi:10.1103/PhysRevLett.23.930.930-934&rft.date=1969&rft_id=info:doi/10.1103/PhysRevLett.23.930&rft_id=info:bibcode/1969PhRvL..23..930B&rft.aulast=Bloom&rft.aufirst=E. D.&rft.au=Coward, D.&rft.au=Destaebler, H.&rft.au=Drees, J.&rft.au=Miller, G.&rft.au=Mo, L.&rft.au=Taylor, R.&rft.au=Breidenbach, M.&rft.au=Friedman, J.&rft.au=Hartmann, G.&rft.au=Kendall, H.&rft_id=https://doi.org/10.1103%2FPhysRevLett.23.930&rfr_id=info:sid/en.wikipedia.org:Up quark" class="Z3988">
  9. ^ M. Breidenbach; Friedman, J.; Kendall, H.; Bloom, E.; Coward, D.; Destaebler, H.; Drees, J.; Mo, L.; Taylor, R.; et al. (1969). "Observed Behavior of Highly Inelastic Electron–Proton Scattering". Physical Review Letters. 23 (16): 935–939. Bibcode:1969PhRvL..23..935B. doi:10.1103/PhysRevLett.23.935. OSTI 1444731. S2CID 2575595.935-939&rft.date=1969&rft_id=info:doi/10.1103/PhysRevLett.23.935&rft_id=https://api.semanticscholar.org/CorpusID:2575595#id-name=S2CID&rft_id=https://www.osti.gov/biblio/1444731#id-name=OSTI&rft_id=info:bibcode/1969PhRvL..23..935B&rft.au=M. Breidenbach&rft.au=Friedman, J.&rft.au=Kendall, H.&rft.au=Bloom, E.&rft.au=Coward, D.&rft.au=Destaebler, H.&rft.au=Drees, J.&rft.au=Mo, L.&rft.au=Taylor, R.&rfr_id=info:sid/en.wikipedia.org:Up quark" class="Z3988">
  10. ^ J. I. Friedman. "The Road to the Nobel Prize". Hue University. Archived from the original on 2008-12-25. Retrieved 2008-09-29.
  11. ^ R. P. Feynman (1969). "Very High-Energy Collisions of Hadrons" (PDF). Physical Review Letters. 23 (24): 1415–1417. Bibcode:1969PhRvL..23.1415F. doi:10.1103/PhysRevLett.23.1415.1415-1417&rft.date=1969&rft_id=info:doi/10.1103/PhysRevLett.23.1415&rft_id=info:bibcode/1969PhRvL..23.1415F&rft.au=R. P. Feynman&rft_id=http://authors.library.caltech.edu/3871/1/FEYprl69.pdf&rfr_id=info:sid/en.wikipedia.org:Up quark" class="Z3988">
  12. ^ S. Kretzer; Lai, H.; Olness, Fredrick; Tung, W.; et al. (2004). "CTEQ6 Parton Distributions with Heavy Quark Mass Effects". Physical Review D. 69 (11): 114005. arXiv:hep-ph/0307022. Bibcode:2004PhRvD..69k4005K. doi:10.1103/PhysRevD.69.114005. S2CID 119379329.
  13. ^ D. J. Griffiths (1987). Introduction to Elementary Particles. John Wiley & Sons. p. 42. ISBN 978-0-471-60386-3.
  14. ^ M. E. Peskin, D. V. Schroeder (1995). An introduction to quantum field theory. Addison–Wesley. p. 556. ISBN 978-0-201-50397-5.
  15. ^ J. Beringer (Particle Data Group); et al. (2012). "PDGLive Particle Summary 'Quarks (u, d, s, c, b, t, b', t', Free)'" (PDF). Particle Data Group. Retrieved 2013-02-21.
  16. ^ Cho, Adrian (April 2010). "Mass of the Common Quark Finally Nailed Down". Science Magazine.

Further reading

edit