In geometry, the triakis truncated tetrahedron is a convex polyhedron made from 4 hexagons and 12 isosceles triangles. It can be used to tessellate three-dimensional space, making the triakis truncated tetrahedral honeycomb.[1][2]
Triakis truncated tetrahedron | |
---|---|
Type | Plesiohedron |
Faces | 4 hexagons 12 isosceles triangles |
Edges | 30 |
Vertices | 16 |
Conway notation | k3tT |
Dual polyhedron | 16|Order-3 truncated triakis tetrahedron |
Properties | convex |
The triakis truncated tetrahedron is the shape of the Voronoi cell of the carbon atoms in diamond, which lie on the diamond cubic crystal structure.[3][4] As the Voronoi cell of a symmetric space pattern, it is a plesiohedron.[5]
Construction
editFor space-filling, the triakis truncated tetrahedron can be constructed as follows:
- Truncate a regular tetrahedron such that the big faces are regular hexagons.
- Add an extra vertex at the center of each of the four smaller tetrahedra that were removed.
See also
editReferences
edit- ^ Conway, John H.; Burgiel, Heidi; Goodman-Strauss, Chaim (2008). The Symmetries of Things. p. 332. ISBN 978-1568812205.
- ^ Grünbaum, B; Shephard, G. C. (1980). "Tilings with Congruent Tiles". Bull. Amer. Math. Soc. 3 (3): 951–973. doi:10.1090/s0273-0979-1980-14827-2.951-973&rft.date=1980&rft_id=info:doi/10.1090/s0273-0979-1980-14827-2&rft.aulast=Grünbaum&rft.aufirst=B&rft.au=Shephard, G. C.&rft_id=http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.bams/1183547682&rfr_id=info:sid/en.wikipedia.org:Triakis truncated tetrahedron" class="Z3988">
- ^ Föppl, L. (1914). "Der Fundamentalbereich des Diamantgitters". Phys. Z. 15: 191–193.191-193&rft.date=1914&rft.aulast=Föppl&rft.aufirst=L.&rfr_id=info:sid/en.wikipedia.org:Triakis truncated tetrahedron" class="Z3988">
- ^ Conway, John. "Voronoi Polyhedron". geometry.puzzles. Retrieved 20 September 2012.
- ^ Grünbaum, Branko; Shephard, G. C. (1980), "Tilings with congruent tiles", Bulletin of the American Mathematical Society, New Series, 3 (3): 951–973, doi:10.1090/S0273-0979-1980-14827-2, MR 0585178951-973&rft.date=1980&rft_id=info:doi/10.1090/S0273-0979-1980-14827-2&rft_id=https://mathscinet.ams.org/mathscinet-getitem?mr=585178#id-name=MR&rft.aulast=Grünbaum&rft.aufirst=Branko&rft.au=Shephard, G. C.&rfr_id=info:sid/en.wikipedia.org:Triakis truncated tetrahedron" class="Z3988">.