Thulium-170 (170Tm or Tm-170) is a radioactive isotope of thulium proposed for use in radiotherapy and in radioisotope thermoelectric generators.

Thulium-170, 170Tm
General
Symbol170Tm
NamesThulium-170, 170Tm, Tm-170
Protons (Z)69
Neutrons (N)101
Nuclide data
Natural abundanceSynthetic
Half-life (t1/2)128.6±0.3 d[1]
Isotope mass169.935807093(785)[1] Da
Spin1[1]
Binding energy1377937.45±0.73[1] keV
Decay products170Yb
170Er
Decay modes
Decay modeDecay energy (MeV)
β0.8838, 0.9686[2]
EC0.2341, 0.3122[2]
Isotopes of thulium
Complete table of nuclides

Properties

edit

Thulium-170 has a binding energy of 8105.5144(43) keV per nucleon and a half-life of 128.6±0.3 d. It decays by β decay to 170Yb about 99.869% of the time, and by electron capture to 170Er about 0.131% of the time.[1] About 18.1% of β decays populate a narrow excited state of 170Yb at 84.25474(8) keV (t1/2 = 1.61 ± 0.02 ns), and this is the main X-ray emission from 170Tm; lower bands are also produced through X-ray fluorescence at 7.42, 51.354, 52.389, 59.159, 59.383, and 60.962 keV.[2][3]

The ground state of thulium-170 has a spin of 1. The charge radius is 5.2303(36) fm, the magnetic moment is 0.2458(17) μN, and the electric quadrupole moment is 0.72(5) eb.[4]

Proposed applications

edit

As a rare-earth element, thulium-170 can be used as the pure metal or thulium hydride, but most commonly thulium oxide due to the refractory properties of that compound.[5][6] The isotope can be prepared in a medium-strength reactor by neutron irradiation of natural thulium, which has a high neutron capture cross section of 103 barns.[3][6]

Medicine

edit

In 1953, the Atomic Energy Research Establishment introduced thulium-170 as a candidate for radiography in medical and steelmaking contexts,[7] but this was deemed unsuitable due to the predominant high-energy bremsstrahlung radiation, poor results on thin specimens, and long exposure times.[8] However, 170Tm has been proposed for radiotherapy because the isotope is simple to prepare into a biocompatible form, and the low-energy radiation can selectively irradiate diseased tissue without causing collateral damage.[3][9]

Radiothermal generator

edit

As the oxide (Tm2O3), thulium-170 has been proposed as a radiothermal source due to it being safer, cheaper, and more environmentally friendly than commonly used isotopes such as plutonium-238.[10][11] The heat output from a 170Tm source is initially much greater than from a 238Pu source relative to mass, but it declines rapidly due to its shorter half-life.[6]

References

edit
  1. ^ a b c d e Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ a b c d "NuDat 3". www.nndc.bnl.gov.
  3. ^ a b c d Polyak, Andras; Das, Tapas; Chakraborty, Sudipta; Kiraly, Reka; Dabasi, Gabriella; Joba, Robert Peter; Jakab, Csaba; Thuroczy, Julianna; Postenyi, Zita; Haasz, Veronika; Janoki, Gergely; Janoki, Gyozo A.; Pillai, Maroor R.A.; Balogh, Lajos (October 2014). "Thulium-170-Labeled Microparticles for Local Radiotherapy: Preliminary Studies". Cancer Biotherapy and Radiopharmaceuticals. 29 (8): 330–338. doi:10.1089/cbr.2014.1680. ISSN 1084-9785. PMID 25226213 – via Academia.edu.330-338&rft.date=2014-10&rft.issn=1084-9785&rft_id=info:pmid/25226213&rft_id=info:doi/10.1089/cbr.2014.1680&rft.aulast=Polyak&rft.aufirst=Andras&rft.au=Das, Tapas&rft.au=Chakraborty, Sudipta&rft.au=Kiraly, Reka&rft.au=Dabasi, Gabriella&rft.au=Joba, Robert Peter&rft.au=Jakab, Csaba&rft.au=Thuroczy, Julianna&rft.au=Postenyi, Zita&rft.au=Haasz, Veronika&rft.au=Janoki, Gergely&rft.au=Janoki, Gyozo A.&rft.au=Pillai, Maroor R.A.&rft.au=Balogh, Lajos&rft_id=https://www.academia.edu/13307480/Thulium_170_Labeled_Microparticles_for_Local_Radiotherapy_Preliminary_Studies&rfr_id=info:sid/en.wikipedia.org:Thulium-170" class="Z3988">
  4. ^ Mertzimekis, Theo J. "NUMOR | Nuclear Moments and Radii | University of Athens | since 2007". magneticmoments.info. Retrieved 12 November 2023.
  5. ^ a b Walter, C.E.; Van Konynenburg, R.; VanSant, J.H. (6 September 1990). "Thulium-170 heat source". doi:10.2172/10156110. OSTI 10156110.
  6. ^ a b c d Dustin, J. Seth; Borrelli, R.A. (December 2021). "Assessment of alternative radionuclides for use in a radioisotope thermoelectric generator". Nuclear Engineering and Design. 385: 111475. doi:10.1016/j.nucengdes.2021.111475. S2CID 240476644.
  7. ^ Hilbish, Theodore F. (November 1954). "Developments in diagnostic radiology". Public Health Reports. 69 (11): 1017–1027. doi:10.2307/4588947. ISSN 0094-6214. JSTOR 4588947. PMC 2024396. PMID 13215708.1017-1027&rft.date=1954-11&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2024396#id-name=PMC&rft_id=https://www.jstor.org/stable/4588947#id-name=JSTOR&rft_id=info:doi/10.2307/4588947&rft_id=info:pmid/13215708&rft.issn=0094-6214&rft.aulast=Hilbish&rft.aufirst=Theodore F.&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2024396&rfr_id=info:sid/en.wikipedia.org:Thulium-170" class="Z3988">
  8. ^ a b Halmshaw, Ronald (1995). Industrial radiology: theory and practice (2. ed.). London: Chapman & Hall. pp. 59–60. ISBN 0412627809.59-60&rft.edition=2.&rft.pub=Chapman & Hall&rft.date=1995&rft.isbn=0412627809&rft.aulast=Halmshaw&rft.aufirst=Ronald&rfr_id=info:sid/en.wikipedia.org:Thulium-170" class="Z3988">
  9. ^ a b Vats, Kusum; Das, Tapas; Sarma, Haladhar D.; Banerjee, Sharmila; Pillai, M.r.a. (December 2013). "Radiolabeling, Stability Studies, and Pharmacokinetic Evaluation of Thulium-170-Labeled Acyclic and Cyclic Polyaminopolyphosphonic Acids" (PDF). Cancer Biotherapy and Radiopharmaceuticals. 28 (10): 737–745. doi:10.1089/cbr.2013.1475. ISSN 1084-9785. PMID 23931111. Archived from the original (PDF) on 2023-11-12.737-745&rft.date=2013-12&rft.issn=1084-9785&rft_id=info:pmid/23931111&rft_id=info:doi/10.1089/cbr.2013.1475&rft.aulast=Vats&rft.aufirst=Kusum&rft.au=Das, Tapas&rft.au=Sarma, Haladhar D.&rft.au=Banerjee, Sharmila&rft.au=Pillai, M.r.a.&rft_id=https://d1wqtxts1xzle7.cloudfront.net/39452235/Polyak_et_al_-_Thulium-170-Labeled_Micro20151027-29202-1id84pt-libre.pdf?1445936337=&response-content-disposition=inline%3B+filename%3DPolyak_et_al_Thulium_170_Labeled_Micropa.pdf&Expires=1699819769&Signature=AGjXXJasvYKkKtVfZYGDWFXSCDcNEBgFrVjZ4wGQ9Nk6NwTu7leQ0zJiaZt~YpgKoKuCqxfMtfJ-BLM1mZQIIMdj-CdX7uEI49jeVOZRqWkv1wPCYjqSuZx2V~KAB5s9nqDeKtqIGNAYC-gQQKmDpdh-jkcObOZJ18WG-a-YPBc8o~7MOSF-41HZuypDeG38210-lTA8s5i4w4BXKJdns91BmY~GrJph1jR4JBHn0qRY8L-vw4lIIfBMDkptMiB-0A5eLt-mjpIH7D7rylwQ3Q0HcOUA39YsoS0q9EGdaXq9kTAfFWkgL88JlaUURsXWi-QVsqpaD~XH5Nx94MxQLQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA&rfr_id=info:sid/en.wikipedia.org:Thulium-170" class="Z3988">
  10. ^ a b Walter, C. E. (1 July 1991). "Infrastructure for thulium-170 isotope power systems for autonomous underwater vehicle fleets". Lawrence Livermore National Lab., CA (United States). OSTI 5491258.
  11. ^ Alderman, Carol J. (1993). "Thulium heat sources for space power application". AIP Conference Proceedings. Vol. 271. pp. 1085–1091. doi:10.1063/1.43194.1085-1091&rft.date=1993&rft_id=info:doi/10.1063/1.43194&rft.aulast=Alderman&rft.aufirst=Carol J.&rfr_id=info:sid/en.wikipedia.org:Thulium-170" class="Z3988">


Lighter:
thulium-169
Thulium-170 is an
isotope of thulium
Heavier:
thulium-171
Decay product of:
Decay chain
of thulium-170
Decays to:
erbium-170
ytterbium-170