In arithmetic geometry, the Tate–Shafarevich group Ш(A/K) of an abelian variety A (or more generally a group scheme) defined over a number field K consists of the elements of the Weil–Châtelet group , where is the absolute Galois group of K, that become trivial in all of the completions of K (i.e., the real and complex completions as well as the p-adic fields obtained from K by completing with respect to all its Archimedean and non Archimedean valuations v). Thus, in terms of Galois cohomology, Ш(A/K) can be defined as
This group was introduced by Serge Lang and John Tate[1] and Igor Shafarevich.[2] Cassels introduced the notation Ш(A/K), [citation needed] where Ш is the Cyrillic letter "Sha", for Shafarevich, replacing the older notation TS or TŠ [citation needed].
Elements of the Tate–Shafarevich group
editGeometrically, the non-trivial elements of the Tate–Shafarevich group can be thought of as the homogeneous spaces of A that have Kv-rational points for every place v of K, but no K-rational point. Thus, the group measures the extent to which the Hasse principle fails to hold for rational equations with coefficients in the field K. Carl-Erik Lind gave an example of such a homogeneous space, by showing that the genus 1 curve x4 − 17 = 2y2 has solutions over the reals and over all p-adic fields, but has no rational points.[3] Ernst S. Selmer gave many more examples, such as 3x3 4y3 5z3 = 0.[4]
The special case of the Tate–Shafarevich group for the finite group scheme consisting of points of some given finite order n of an abelian variety is closely related to the Selmer group.
Tate-Shafarevich conjecture
editThe Tate–Shafarevich conjecture states that the Tate–Shafarevich group is finite. Karl Rubin proved this for some elliptic curves of rank at most 1 with complex multiplication.[5] Victor A. Kolyvagin extended this to modular elliptic curves over the rationals of analytic rank at most 1 (The modularity theorem later showed that the modularity assumption always holds).[6] Theorem 1.1 of Nikolaev [7] treats simple abelian varieties over number fields.
It is known that the Tate–Shafarevich group is a torsion group,[8][9] thus the conjecture is equivalent to stating that the group is finitely generated.
Cassels–Tate pairing
editThe Cassels–Tate pairing is a bilinear pairing Ш(A) × Ш(Â) → Q/Z, where A is an abelian variety and  is its dual. Cassels introduced this for elliptic curves, when A can be identified with  and the pairing is an alternating form.[10] The kernel of this form is the subgroup of divisible elements, which is trivial if the Tate–Shafarevich conjecture is true. Tate extended the pairing to general abelian varieties, as a variation of Tate duality.[11] A choice of polarization on A gives a map from A to Â, which induces a bilinear pairing on Ш(A) with values in Q/Z, but unlike the case of elliptic curves this need not be alternating or even skew symmetric.
For an elliptic curve, Cassels showed that the pairing is alternating, and a consequence is that if the order of Ш is finite then it is a square. For more general abelian varieties it was sometimes incorrectly believed for many years that the order of Ш is a square whenever it is finite; this mistake originated in a paper by Swinnerton-Dyer,[12] who misquoted one of the results of Tate.[11] Poonen and Stoll gave some examples where the order is twice a square, such as the Jacobian of a certain genus 2 curve over the rationals whose Tate–Shafarevich group has order 2,[13] and Stein gave some examples where the power of an odd prime dividing the order is odd.[14] If the abelian variety has a principal polarization then the form on Ш is skew symmetric which implies that the order of Ш is a square or twice a square (if it is finite), and if in addition the principal polarization comes from a rational divisor (as is the case for elliptic curves) then the form is alternating and the order of Ш is a square (if it is finite). On the other hand building on the results just presented Konstantinou showed that for any squarefree number n there is an abelian variety A defined over Q and an integer m with |Ш| = n ⋅ m2.[15] In particular Ш is finite in Konstantinou's examples and these examples confirm a conjecture of Stein. Thus modulo squares any integer can be the order of Ш.
See also
editCitations
edit- ^ Lang & Tate 1958.
- ^ Shafarevich 1959.
- ^ Lind 1940.
- ^ Selmer 1951.
- ^ Rubin 1987.
- ^ Kolyvagin 1988.
- ^ Nikolaev, Igor V. (2024), Shafarevich-Tate groups of abelian varieties, Contemporary Mathematics, vol. 798, American Mathematical Society, pp. 229–239, arXiv:2005.09970, doi:10.1090/conm/798/15988229-239&rft.pub=American Mathematical Society&rft.date=2024&rft_id=info:arxiv/2005.09970&rft_id=info:doi/10.1090/conm/798/15988&rft.aulast=Nikolaev&rft.aufirst=Igor V.&rfr_id=info:sid/en.wikipedia.org:Tate–Shafarevich group" class="Z3988">
- ^ Kolyvagin, V. A. (1991), "On the structure of shafarevich-tate groups", Algebraic Geometry, Lecture Notes in Mathematics, vol. 1479, Springer Berlin Heidelberg, pp. 94–121, doi:10.1007/bfb0086267, ISBN 978-3-540-54456-294-121&rft.date=1991&rft_id=info:doi/10.1007/bfb0086267&rft.isbn=978-3-540-54456-2&rft.aulast=Kolyvagin&rft.aufirst=V. A.&rfr_id=info:sid/en.wikipedia.org:Tate–Shafarevich group" class="Z3988">
- ^ Poonen, Bjorn (2024-09-01). "THE SELMER GROUP, THE SHAFAREVICH-TATE GROUP, AND THE WEAK MORDELL-WEIL THEOREM" (PDF).
- ^ Cassels 1962.
- ^ a b Tate 1963.
- ^ Swinnerton-Dyer 1967.
- ^ Poonen & Stoll 1999.
- ^ Stein 2004.
- ^ Konstantinou 2024.
References
edit- Cassels, John William Scott (1962), "Arithmetic on curves of genus 1. III. The Tate–Šafarevič and Selmer groups", Proceedings of the London Mathematical Society, Third Series, 12: 259–296, doi:10.1112/plms/s3-12.1.259, ISSN 0024-6115, MR 0163913259-296&rft.date=1962&rft_id=https://mathscinet.ams.org/mathscinet-getitem?mr=0163913#id-name=MR&rft.issn=0024-6115&rft_id=info:doi/10.1112/plms/s3-12.1.259&rft.aulast=Cassels&rft.aufirst=John William Scott&rfr_id=info:sid/en.wikipedia.org:Tate–Shafarevich group" class="Z3988">
- Cassels, John William Scott (1962b), "Arithmetic on curves of genus 1. IV. Proof of the Hauptvermutung", Journal für die reine und angewandte Mathematik, 211 (211): 95–112, doi:10.1515/crll.1962.211.95, ISSN 0075-4102, MR 016391595-112&rft.date=1962&rft_id=https://mathscinet.ams.org/mathscinet-getitem?mr=0163915#id-name=MR&rft.issn=0075-4102&rft_id=info:doi/10.1515/crll.1962.211.95&rft.aulast=Cassels&rft.aufirst=John William Scott&rft_id=http://resolver.sub.uni-goettingen.de/purl?GDZPPN002179873&rfr_id=info:sid/en.wikipedia.org:Tate–Shafarevich group" class="Z3988">
- Cassels, John William Scott (1991), Lectures on elliptic curves, London Mathematical Society Student Texts, vol. 24, Cambridge University Press, doi:10.1017/CBO9781139172530, ISBN 978-0-521-41517-0, MR 1144763
- Hindry, Marc; Silverman, Joseph H. (2000), Diophantine geometry: an introduction, Graduate Texts in Mathematics, vol. 201, Berlin, New York: Springer-Verlag, ISBN 978-0-387-98981-5
- Greenberg, Ralph (1994), "Iwasawa Theory and p-adic Deformation of Motives", in Serre, Jean-Pierre; Jannsen, Uwe; Kleiman, Steven L. (eds.), Motives, Providence, R.I.: American Mathematical Society, ISBN 978-0-8218-1637-0
- Kolyvagin, V. A. (1988), "Finiteness of E(Q) and SH(E,Q) for a subclass of Weil curves", Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 52 (3): 522–540, 670–671, ISSN 0373-2436, 954295522-540, 670-671&rft.date=1988&rft.issn=0373-2436&rft.aulast=Kolyvagin&rft.aufirst=V. A.&rfr_id=info:sid/en.wikipedia.org:Tate–Shafarevich group" class="Z3988">
- Lang, Serge; Tate, John (1958), "Principal homogeneous spaces over abelian varieties", American Journal of Mathematics, 80 (3): 659–684, doi:10.2307/2372778, ISSN 0002-9327, JSTOR 2372778, MR 0106226659-684&rft.date=1958&rft.issn=0002-9327&rft_id=https://mathscinet.ams.org/mathscinet-getitem?mr=0106226#id-name=MR&rft_id=https://www.jstor.org/stable/2372778#id-name=JSTOR&rft_id=info:doi/10.2307/2372778&rft.aulast=Lang&rft.aufirst=Serge&rft.au=Tate, John&rfr_id=info:sid/en.wikipedia.org:Tate–Shafarevich group" class="Z3988">
- Lind, Carl-Erik (1940). Untersuchungen über die rationalen Punkte der ebenen kubischen Kurven vom Geschlecht Eins (Thesis). Vol. 1940. University of Uppsala. 97 pp. MR 0022563.
- Poonen, Bjorn; Stoll, Michael (1999), "The Cassels-Tate pairing on polarized abelian varieties", Annals of Mathematics, Second Series, 150 (3): 1109–1149, arXiv:math/9911267, doi:10.2307/121064, ISSN 0003-486X, JSTOR 121064, MR 17409841109-1149&rft.date=1999&rft_id=https://www.jstor.org/stable/121064#id-name=JSTOR&rft_id=info:doi/10.2307/121064&rft_id=info:arxiv/math/9911267&rft.issn=0003-486X&rft_id=https://mathscinet.ams.org/mathscinet-getitem?mr=1740984#id-name=MR&rft.aulast=Poonen&rft.aufirst=Bjorn&rft.au=Stoll, Michael&rfr_id=info:sid/en.wikipedia.org:Tate–Shafarevich group" class="Z3988">
- Rubin, Karl (1987), "Tate–Shafarevich groups and L-functions of elliptic curves with complex multiplication", Inventiones Mathematicae, 89 (3): 527–559, Bibcode:1987InMat..89..527R, doi:10.1007/BF01388984, ISSN 0020-9910, MR 0903383527-559&rft.date=1987&rft_id=info:doi/10.1007/BF01388984&rft_id=https://mathscinet.ams.org/mathscinet-getitem?mr=903383#id-name=MR&rft.issn=0020-9910&rft_id=info:bibcode/1987InMat..89..527R&rft.aulast=Rubin&rft.aufirst=Karl&rfr_id=info:sid/en.wikipedia.org:Tate–Shafarevich group" class="Z3988">
- Selmer, Ernst S. (1951), "The Diophantine equation ax³ by³ cz³=0", Acta Mathematica, 85: 203–362, doi:10.1007/BF02395746, ISSN 0001-5962, MR 0041871203-362&rft.date=1951&rft_id=https://mathscinet.ams.org/mathscinet-getitem?mr=0041871#id-name=MR&rft.issn=0001-5962&rft_id=info:doi/10.1007/BF02395746&rft.aulast=Selmer&rft.aufirst=Ernst S.&rfr_id=info:sid/en.wikipedia.org:Tate–Shafarevich group" class="Z3988">
- Shafarevich, I. R. (1959), "The group of principal homogeneous algebraic manifolds", Doklady Akademii Nauk SSSR (in Russian), 124: 42–43, ISSN 0002-3264, MR 010622742-43&rft.date=1959&rft.issn=0002-3264&rft_id=https://mathscinet.ams.org/mathscinet-getitem?mr=0106227#id-name=MR&rft.aulast=Shafarevich&rft.aufirst=I. R.&rfr_id=info:sid/en.wikipedia.org:Tate–Shafarevich group" class="Z3988"> English translation in his collected mathematical papers
- Stein, William A. (2004), "Shafarevich–Tate groups of nonsquare order" (PDF), Modular curves and abelian varieties, Progr. Math., vol. 224, Basel, Boston, Berlin: Birkhäuser, pp. 277–289, MR 2058655277-289&rft.pub=Birkhäuser&rft.date=2004&rft_id=https://mathscinet.ams.org/mathscinet-getitem?mr=2058655#id-name=MR&rft.aulast=Stein&rft.aufirst=William A.&rft_id=http://wstein.org/papers/nonsquaresha/final2.pdf&rfr_id=info:sid/en.wikipedia.org:Tate–Shafarevich group" class="Z3988">
- Swinnerton-Dyer, P. (1967), "The conjectures of Birch and Swinnerton-Dyer, and of Tate", in Springer, Tonny A. (ed.), Proceedings of a Conference on Local Fields (Driebergen, 1966), Berlin, New York: Springer-Verlag, pp. 132–157, MR 0230727132-157&rft.pub=Springer-Verlag&rft.date=1967&rft_id=https://mathscinet.ams.org/mathscinet-getitem?mr=0230727#id-name=MR&rft.aulast=Swinnerton-Dyer&rft.aufirst=P.&rft_id=https://books.google.com/books?id=I983HAAACAAJ&rfr_id=info:sid/en.wikipedia.org:Tate–Shafarevich group" class="Z3988">
- Tate, John (1958), WC-groups over p-adic fields, Séminaire Bourbaki; 10e année: 1957/1958, vol. 13, Paris: Secrétariat Mathématique, MR 0105420
- Tate, John (1963), "Duality theorems in Galois cohomology over number fields", Proceedings of the International Congress of Mathematicians (Stockholm, 1962), Djursholm: Inst. Mittag-Leffler, pp. 288–295, MR 0175892, archived from the original on 2011-07-17288-295&rft.pub=Inst. Mittag-Leffler&rft.date=1963&rft_id=https://mathscinet.ams.org/mathscinet-getitem?mr=0175892#id-name=MR&rft.aulast=Tate&rft.aufirst=John&rft_id=http://mathunion.org/ICM/ICM1962.1/&rfr_id=info:sid/en.wikipedia.org:Tate–Shafarevich group" class="Z3988">
- Weil, André (1955), "On algebraic groups and homogeneous spaces", American Journal of Mathematics, 77 (3): 493–512, doi:10.2307/2372637, ISSN 0002-9327, JSTOR 2372637, MR 0074084493-512&rft.date=1955&rft.issn=0002-9327&rft_id=https://mathscinet.ams.org/mathscinet-getitem?mr=0074084#id-name=MR&rft_id=https://www.jstor.org/stable/2372637#id-name=JSTOR&rft_id=info:doi/10.2307/2372637&rft.aulast=Weil&rft.aufirst=André&rfr_id=info:sid/en.wikipedia.org:Tate–Shafarevich group" class="Z3988">
- Konstantinou, Alexandros (2024-04-25). "A note on the order of the Tate-Shafarevich group modulo squares". arXiv:2404.16785 [math.NT].