Superconformal algebra

(Redirected from Superconformal field theory)

In theoretical physics, the superconformal algebra is a graded Lie algebra or superalgebra that combines the conformal algebra and supersymmetry. In two dimensions, the superconformal algebra is infinite-dimensional. In higher dimensions, superconformal algebras are finite-dimensional and generate the superconformal group (in two Euclidean dimensions, the Lie superalgebra does not generate any Lie supergroup).

Superconformal algebra in dimension greater than 2

edit

The conformal group of the  -dimensional space   is   and its Lie algebra is  . The superconformal algebra is a Lie superalgebra containing the bosonic factor   and whose odd generators transform in spinor representations of  . Given Kac's classification of finite-dimensional simple Lie superalgebras, this can only happen for small values of   and  . A (possibly incomplete) list is

  •   in 3 0D thanks to  ;
  •   in 2 1D thanks to  ;
  •   in 4 0D thanks to  ;
  •   in 3 1D thanks to  ;
  •   in 2 2D thanks to  ;
  • real forms of   in five dimensions
  •   in 5 1D, thanks to the fact that spinor and fundamental representations of   are mapped to each other by outer automorphisms.

Superconformal algebra in 3 1D

edit

According to [1][2] the superconformal algebra with   supersymmetries in 3 1 dimensions is given by the bosonic generators  ,  ,  ,  , the U(1) R-symmetry  , the SU(N) R-symmetry   and the fermionic generators  ,  ,   and  . Here,   denote spacetime indices;   left-handed Weyl spinor indices;   right-handed Weyl spinor indices; and   the internal R-symmetry indices.

The Lie superbrackets of the bosonic conformal algebra are given by

 
 
 
 
 
 
 
 
 

where η is the Minkowski metric; while the ones for the fermionic generators are:

 
 
 
 
 
 

The bosonic conformal generators do not carry any R-charges, as they commute with the R-symmetry generators:

 
 

But the fermionic generators do carry R-charge:

 
 
 
 
 
 
 
 

Under bosonic conformal transformations, the fermionic generators transform as:

 
 
 
 
 
 

Superconformal algebra in 2D

edit

There are two possible algebras with minimal supersymmetry in two dimensions; a Neveu–Schwarz algebra and a Ramond algebra. Additional supersymmetry is possible, for instance the N = 2 superconformal algebra.

See also

edit

References

edit
  1. ^ West, P. C. (2002). "Introduction to Rigid Supersymmetric Theories". Confinement, Duality, and Non-Perturbative Aspects of QCD. NATO Science Series: B. Vol. 368. pp. 453–476. arXiv:hep-th/9805055. doi:10.1007/0-306-47056-X_17. ISBN 0-306-45826-8. S2CID 119413468.453-476&rft.date=2002&rft_id=info:arxiv/hep-th/9805055&rft_id=https://api.semanticscholar.org/CorpusID:119413468#id-name=S2CID&rft_id=info:doi/10.1007/0-306-47056-X_17&rft.isbn=0-306-45826-8&rft.aulast=West&rft.aufirst=P. C.&rfr_id=info:sid/en.wikipedia.org:Superconformal algebra" class="Z3988">
  2. ^ Gates, S. J.; Grisaru, Marcus T.; Rocek, M.; Siegel, W. (1983). "Superspace, or one thousand and one lessons in supersymmetry". Frontiers in Physics. 58: 1–548. arXiv:hep-th/0108200. Bibcode:2001hep.th....8200G.1-548&rft.date=1983&rft_id=info:arxiv/hep-th/0108200&rft_id=info:bibcode/2001hep.th....8200G&rft.aulast=Gates&rft.aufirst=S. J.&rft.au=Grisaru, Marcus T.&rft.au=Rocek, M.&rft.au=Siegel, W.&rfr_id=info:sid/en.wikipedia.org:Superconformal algebra" class="Z3988">