The conformal group of the -dimensional space is and its Lie algebra is . The superconformal algebra is a Lie superalgebra containing the bosonic factor and whose odd generators transform in spinor representations of . Given Kac's classification of finite-dimensional simple Lie superalgebras, this can only happen for small values of and . A (possibly incomplete) list is
in 3 0D thanks to ;
in 2 1D thanks to ;
in 4 0D thanks to ;
in 3 1D thanks to ;
in 2 2D thanks to ;
real forms of in five dimensions
in 5 1D, thanks to the fact that spinor and fundamental representations of are mapped to each other by outer automorphisms.
According to [1][2] the superconformal algebra with supersymmetries in 3 1 dimensions is given by the bosonic generators , , , , the U(1) R-symmetry, the SU(N) R-symmetry and the fermionic generators , , and . Here, denote spacetime indices; left-handed Weyl spinor indices; right-handed Weyl spinor indices; and the internal R-symmetry indices.
There are two possible algebras with minimal supersymmetry in two dimensions; a Neveu–Schwarz algebra and a Ramond algebra. Additional supersymmetry is possible, for instance the N = 2 superconformal algebra.
^West, P. C. (2002). "Introduction to Rigid Supersymmetric Theories". Confinement, Duality, and Non-Perturbative Aspects of QCD. NATO Science Series: B. Vol. 368. pp. 453–476. arXiv:hep-th/9805055. doi:10.1007/0-306-47056-X_17. ISBN0-306-45826-8. S2CID119413468.453-476&rft.date=2002&rft_id=info:arxiv/hep-th/9805055&rft_id=https://api.semanticscholar.org/CorpusID:119413468#id-name=S2CID&rft_id=info:doi/10.1007/0-306-47056-X_17&rft.isbn=0-306-45826-8&rft.aulast=West&rft.aufirst=P. C.&rfr_id=info:sid/en.wikipedia.org:Superconformal algebra" class="Z3988">
^
Gates, S. J.; Grisaru, Marcus T.; Rocek, M.; Siegel, W. (1983). "Superspace, or one thousand and one lessons in supersymmetry". Frontiers in Physics. 58: 1–548. arXiv:hep-th/0108200. Bibcode:2001hep.th....8200G.1-548&rft.date=1983&rft_id=info:arxiv/hep-th/0108200&rft_id=info:bibcode/2001hep.th....8200G&rft.aulast=Gates&rft.aufirst=S. J.&rft.au=Grisaru, Marcus T.&rft.au=Rocek, M.&rft.au=Siegel, W.&rfr_id=info:sid/en.wikipedia.org:Superconformal algebra" class="Z3988">