Aspartate transaminase (AST) or aspartate aminotransferase, also known as AspAT/ASAT/AAT or (serum) glutamic oxaloacetic transaminase (GOT, SGOT), is a pyridoxal phosphate (PLP)-dependent transaminase enzyme (EC 2.6.1.1) that was first described by Arthur Karmen and colleagues in 1954.[1][2][3] AST catalyzes the reversible transfer of an α-amino group between aspartate and glutamate and, as such, is an important enzyme in amino acid metabolism. AST is found in the liver, heart, skeletal muscle, kidneys, brain, red blood cells and gall bladder. Serum AST level, serum ALT (alanine transaminase) level, and their ratio (AST/ALT ratio) are commonly measured clinically as biomarkers for liver health. The tests are part of blood panels.
The half-life of total AST in the circulation approximates 17 hours and, on average, 87 hours for mitochondrial AST.[4] Aminotransferase is cleared by sinusoidal cells in the liver.[4]
Function
editAspartate transaminase catalyzes the interconversion of aspartate and α-ketoglutarate to oxaloacetate and glutamate.
L-Aspartate (Asp) α-ketoglutarate ↔ oxaloacetate L-glutamate (Glu)
As a prototypical transaminase, AST relies on PLP (Vitamin B6) as a cofactor to transfer the amino group from aspartate or glutamate to the corresponding ketoacid. In the process, the cofactor shuttles between PLP and the pyridoxamine phosphate (PMP) form.[5] The amino group transfer catalyzed by this enzyme is crucial in both amino acid degradation and biosynthesis. In amino acid degradation, following the conversion of α-ketoglutarate to glutamate, glutamate subsequently undergoes oxidative deamination to form ammonium ions, which are excreted as urea. In the reverse reaction, aspartate may be synthesized from oxaloacetate, which is a key intermediate in the citric acid cycle.[6]
Isoenzymes
editTwo isoenzymes are present in a wide variety of eukaryotes. In humans:[citation needed]
- GOT1/cAST, the cytosolic isoenzyme derives mainly from red blood cells and heart.
- GOT2/mAST, the mitochondrial isoenzyme is present predominantly in liver.
These isoenzymes are thought to have evolved from a common ancestral AST via gene duplication, and they share a sequence homology of approximately 45%.[7]
AST has also been found in a number of microorganisms, including E. coli, H. mediterranei,[8] and T. thermophilus.[9] In E. coli, the enzyme is encoded by the aspCgene and has also been shown to exhibit the activity of an aromatic-amino-acid transaminase (EC 2.6.1.57).[10]
Structure
editX-ray crystallography studies have been performed to determine the structure of aspartate transaminase from various sources, including chicken mitochondria,[11] pig heart cytosol,[12] and E. coli.[13][14] Overall, the three-dimensional polypeptide structure for all species is quite similar. AST is dimeric, consisting of two identical subunits, each with approximately 400 amino acid residues and a molecular weight of approximately 45 kD.[7] Each subunit is composed of a large and a small domain, as well as a third domain consisting of the N-terminal residues 3-14; these few residues form a strand, which links and stabilizes the two subunits of the dimer. The large domain, which includes residues 48-325, binds the PLP cofactor via an aldimine linkage to the ε-amino group of Lys258. Other residues in this domain – Asp 222 and Tyr 225 – also interact with PLP via hydrogen bonding. The small domain consists of residues 15-47 and 326-410 and represents a flexible region that shifts the enzyme from an "open" to a "closed" conformation upon substrate binding.[11][14][15]
The two independent active sites are positioned near the interface between the two domains. Within each active site, a couple arginine residues are responsible for the enzyme's specificity for dicarboxylic acid substrates: Arg386 interacts with the substrate's proximal (α-)carboxylate group, while Arg292 complexes with the distal (side-chain) carboxylate.[11][14]
In terms of secondary structure, AST contains both α and β elements. Each domain has a central sheet of β-strands with α-helices packed on either side.[citation needed]
Mechanism
editAspartate transaminase, as with all transaminases, operates via dual substrate recognition; that is, it is able to recognize and selectively bind two amino acids (Asp and Glu) with different side-chains.[16] In either case, the transaminase reaction consists of two similar half-reactions that constitute what is referred to as a ping-pong mechanism. In the first half-reaction, amino acid 1 (e.g., L-Asp) reacts with the enzyme-PLP complex to generate ketoacid 1 (oxaloacetate) and the modified enzyme-PMP. In the second half-reaction, ketoacid 2 (α-ketoglutarate) reacts with enzyme-PMP to produce amino acid 2 (L-Glu), regenerating the original enzyme-PLP in the process. Formation of a racemic product (D-Glu) is very rare.[17]
The specific steps for the half-reaction of Enzyme-PLP aspartate ⇌ Enzyme-PMP oxaloacetate are as follows (see figure); the other half-reaction (not shown) proceeds in the reverse manner, with α-ketoglutarate as the substrate.[5][6]
- Internal aldimine formation: First, the ε-amino group of Lys258 forms a Schiff base linkage with the aldehyde carbon to generate an internal aldimine.
- Transaldimination: The internal aldimine then becomes an external aldimine when the ε-amino group of Lys258 is displaced by the amino group of aspartate. This transaldimination reaction occurs via a nucleophilic attack by the deprotonated amino group of Asp and proceeds through a tetrahedral intermediate. As this point, the carboxylate groups of Asp are stabilized by the guanidinium groups of the enzyme's Arg386 and Arg 292 residues.
- Quinonoid formation: The hydrogen attached to the a-carbon of Asp is then abstracted (Lys258 is thought to be the proton acceptor) to form a quinonoid intermediate.
- Ketimine formation: The quinonoid is reprotonated, but now at the aldehyde carbon, to form the ketimine intermediate.
- Ketimine hydrolysis: Finally, the ketimine is hydrolyzed to form PMP and oxaloacetate.
This mechanism is thought to have multiple partially rate-determining steps.[18] However, it has been shown that the substrate binding step (transaldimination) drives the catalytic reaction forward.[19]
Clinical significance
editAST is similar to alanine transaminase (ALT) in that both enzymes are associated with liver parenchymal cells. The difference is that ALT is found predominantly in the liver, with clinically negligible quantities found in the kidneys, heart, and skeletal muscle, while AST is found in the liver, heart (cardiac muscle), skeletal muscle, kidneys, brain, and red blood cells.[citation needed] As a result, ALT is a more specific indicator of liver inflammation than AST, as AST may be elevated also in diseases affecting other organs, such as myocardial infarction, acute pancreatitis, acute hemolytic anemia, severe burns, acute renal disease, musculoskeletal diseases, and trauma.[20]
AST was defined as a biochemical marker for the diagnosis of acute myocardial infarction in 1954. However, the use of AST for such a diagnosis is now redundant and has been superseded by the cardiac troponins.[21]
Laboratory tests should always be interpreted using the reference range from the laboratory that performed the test. Example reference ranges are shown below:
Patient type | Reference ranges[22] |
Male | 8–40 IU/L |
Female | 6–34 IU/L |
See also
edit- Alanine transaminase (ALT/ALAT/SGPT)
- Transaminases
References
edit- ^ Karmen A, Wroblewski F, Ladue JS (January 1955). "Transaminase activity in human blood". The Journal of Clinical Investigation. 34 (1): 126–131. doi:10.1172/jci103055. PMC 438863. PMID 13221663.126-131&rft.date=1955-01&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC438863#id-name=PMC&rft_id=info:pmid/13221663&rft_id=info:doi/10.1172/jci103055&rft.aulast=Karmen&rft.aufirst=A&rft.au=Wroblewski, F&rft.au=Ladue, JS&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC438863&rfr_id=info:sid/en.wikipedia.org:Aspartate transaminase" class="Z3988">
- ^ Karmen A (January 1955). "A note on the spectrometric assay of glutamic-oxalacetic transaminase in human blood serum". The Journal of Clinical Investigation. 34 (1): 131–133. doi:10.1172/JCI103055. PMC 438863. PMID 13221664.131-133&rft.date=1955-01&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC438863#id-name=PMC&rft_id=info:pmid/13221664&rft_id=info:doi/10.1172/JCI103055&rft.aulast=Karmen&rft.aufirst=A&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC438863&rfr_id=info:sid/en.wikipedia.org:Aspartate transaminase" class="Z3988">
- ^ Ladue JS, Wroblewski F, Karmen A (September 1954). "Serum glutamic oxaloacetic transaminase activity in human acute transmural myocardial infarction". Science. 120 (3117): 497–499. Bibcode:1954Sci...120..497L. doi:10.1126/science.120.3117.497. PMID 13195683.497-499&rft.date=1954-09&rft_id=info:pmid/13195683&rft_id=info:doi/10.1126/science.120.3117.497&rft_id=info:bibcode/1954Sci...120..497L&rft.aulast=Ladue&rft.aufirst=JS&rft.au=Wroblewski, F&rft.au=Karmen, A&rfr_id=info:sid/en.wikipedia.org:Aspartate transaminase" class="Z3988">
- ^ a b Giannini EG, Testa R, Savarino V (February 2005). "Liver enzyme alteration: a guide for clinicians". CMAJ. 172 (3): 367–379. doi:10.1503/cmaj.1040752. PMC 545762. PMID 15684121.
Aminotransferase clearance is carried out within the liver by sinusoidal cells. The half-life in the circulation is about 47 hours for ALT, about 17 hours for total AST and, on average, 87 hours for mitochondrial AST.
367-379&rft.date=2005-02&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC545762#id-name=PMC&rft_id=info:pmid/15684121&rft_id=info:doi/10.1503/cmaj.1040752&rft.aulast=Giannini&rft.aufirst=EG&rft.au=Testa, R&rft.au=Savarino, V&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC545762&rfr_id=info:sid/en.wikipedia.org:Aspartate transaminase" class="Z3988"> - ^ a b Kirsch JF, Eichele G, Ford GC, Vincent MG, Jansonius JN, Gehring H, Christen P (April 1984). "Mechanism of action of aspartate aminotransferase proposed on the basis of its spatial structure". Journal of Molecular Biology. 174 (3): 497–525. doi:10.1016/0022-2836(84)90333-4. PMID 6143829.497-525&rft.date=1984-04&rft_id=info:doi/10.1016/0022-2836(84)90333-4&rft_id=info:pmid/6143829&rft.aulast=Kirsch&rft.aufirst=JF&rft.au=Eichele, G&rft.au=Ford, GC&rft.au=Vincent, MG&rft.au=Jansonius, JN&rft.au=Gehring, H&rft.au=Christen, P&rfr_id=info:sid/en.wikipedia.org:Aspartate transaminase" class="Z3988">
- ^ a b Berg JM, Tymoczko JL, Stryer L (2006). Biochemistry. W.H. Freeman. pp. 656–660. ISBN 978-0-7167-8724-2.656-660&rft.pub=W.H. Freeman&rft.date=2006&rft.isbn=978-0-7167-8724-2&rft.aulast=Berg&rft.aufirst=JM&rft.au=Tymoczko, JL&rft.au=Stryer, L&rfr_id=info:sid/en.wikipedia.org:Aspartate transaminase" class="Z3988">
- ^ a b Hayashi H, Wada H, Yoshimura T, Esaki N, Soda K (1990). "Recent topics in pyridoxal 5'-phosphate enzyme studies". Annual Review of Biochemistry. 59: 87–110. doi:10.1146/annurev.bi.59.070190.000511. PMID 2197992.87-110&rft.date=1990&rft_id=info:doi/10.1146/annurev.bi.59.070190.000511&rft_id=info:pmid/2197992&rft.aulast=Hayashi&rft.aufirst=H&rft.au=Wada, H&rft.au=Yoshimura, T&rft.au=Esaki, N&rft.au=Soda, K&rfr_id=info:sid/en.wikipedia.org:Aspartate transaminase" class="Z3988">
- ^ Muriana FJ, Alvarez-Ossorio MC, Relimpio AM (August 1991). "Purification and characterization of aspartate aminotransferase from the halophile archaebacterium Haloferax mediterranei". The Biochemical Journal. 278 (1): 149–154. doi:10.1042/bj2780149. PMC 1151461. PMID 1909112.149-154&rft.date=1991-08&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1151461#id-name=PMC&rft_id=info:pmid/1909112&rft_id=info:doi/10.1042/bj2780149&rft.aulast=Muriana&rft.aufirst=FJ&rft.au=Alvarez-Ossorio, MC&rft.au=Relimpio, AM&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1151461&rfr_id=info:sid/en.wikipedia.org:Aspartate transaminase" class="Z3988">
- ^ Okamoto A, Kato R, Masui R, Yamagishi A, Oshima T, Kuramitsu S (January 1996). "An aspartate aminotransferase from an extremely thermophilic bacterium, Thermus thermophilus HB8". Journal of Biochemistry. 119 (1): 135–144. doi:10.1093/oxfordjournals.jbchem.a021198. PMID 8907187.135-144&rft.date=1996-01&rft_id=info:doi/10.1093/oxfordjournals.jbchem.a021198&rft_id=info:pmid/8907187&rft.aulast=Okamoto&rft.aufirst=A&rft.au=Kato, R&rft.au=Masui, R&rft.au=Yamagishi, A&rft.au=Oshima, T&rft.au=Kuramitsu, S&rfr_id=info:sid/en.wikipedia.org:Aspartate transaminase" class="Z3988">
- ^ Gelfand DH, Steinberg RA (April 1977). "Escherichia coli mutants deficient in the aspartate and aromatic amino acid aminotransferases". Journal of Bacteriology. 130 (1): 429–440. doi:10.1128/JB.130.1.429-440.1977. PMC 235221. PMID 15983.429-440&rft.date=1977-04&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC235221#id-name=PMC&rft_id=info:pmid/15983&rft_id=info:doi/10.1128/JB.130.1.429-440.1977&rft.aulast=Gelfand&rft.aufirst=DH&rft.au=Steinberg, RA&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC235221&rfr_id=info:sid/en.wikipedia.org:Aspartate transaminase" class="Z3988">
- ^ a b c McPhalen CA, Vincent MG, Jansonius JN (May 1992). "X-ray structure refinement and comparison of three forms of mitochondrial aspartate aminotransferase". Journal of Molecular Biology. 225 (2): 495–517. doi:10.1016/0022-2836(92)90935-D. PMID 1593633.495-517&rft.date=1992-05&rft_id=info:doi/10.1016/0022-2836(92)90935-D&rft_id=info:pmid/1593633&rft.aulast=McPhalen&rft.aufirst=CA&rft.au=Vincent, MG&rft.au=Jansonius, JN&rfr_id=info:sid/en.wikipedia.org:Aspartate transaminase" class="Z3988">
- ^ Rhee S, Silva MM, Hyde CC, Rogers PH, Metzler CM, Metzler DE, Arnone A (July 1997). "Refinement and comparisons of the crystal structures of pig cytosolic aspartate aminotransferase and its complex with 2-methylaspartate". The Journal of Biological Chemistry. 272 (28): 17293–17302. doi:10.1074/jbc.272.28.17293. PMID 9211866.17293-17302&rft.date=1997-07&rft_id=info:doi/10.1074/jbc.272.28.17293&rft_id=info:pmid/9211866&rft.aulast=Rhee&rft.aufirst=S&rft.au=Silva, MM&rft.au=Hyde, CC&rft.au=Rogers, PH&rft.au=Metzler, CM&rft.au=Metzler, DE&rft.au=Arnone, A&rft_id=https://doi.org/10.1074%2Fjbc.272.28.17293&rfr_id=info:sid/en.wikipedia.org:Aspartate transaminase" class="Z3988">
- ^ Kamitori S, Hirotsu K, Higuchi T, Kondo K, Inoue K, Kuramitsu S, et al. (September 1988). "Three-dimensional structure of aspartate aminotransferase from Escherichia coli at 2.8 A resolution". Journal of Biochemistry. 104 (3): 317–318. doi:10.1093/oxfordjournals.jbchem.a122464. PMID 3071527.317-318&rft.date=1988-09&rft_id=info:doi/10.1093/oxfordjournals.jbchem.a122464&rft_id=info:pmid/3071527&rft.aulast=Kamitori&rft.aufirst=S&rft.au=Hirotsu, K&rft.au=Higuchi, T&rft.au=Kondo, K&rft.au=Inoue, K&rft.au=Kuramitsu, S&rft.au=Kagamiyama, H&rft.au=Higuchi, Y&rft.au=Yasuoka, N&rft.au=Kusunoki, M&rfr_id=info:sid/en.wikipedia.org:Aspartate transaminase" class="Z3988">
- ^ a b c Danishefsky AT, Onnufer JJ, Petsko GA, Ringe D (February 1991). "Activity and structure of the active-site mutants R386Y and R386F of Escherichia coli aspartate aminotransferase". Biochemistry. 30 (7): 1980–1985. doi:10.1021/bi00221a035. PMID 1993208.1980-1985&rft.date=1991-02&rft_id=info:doi/10.1021/bi00221a035&rft_id=info:pmid/1993208&rft.aulast=Danishefsky&rft.aufirst=AT&rft.au=Onnufer, JJ&rft.au=Petsko, GA&rft.au=Ringe, D&rfr_id=info:sid/en.wikipedia.org:Aspartate transaminase" class="Z3988">
- ^ McPhalen CA, Vincent MG, Picot D, Jansonius JN, Lesk AM, Chothia C (September 1992). "Domain closure in mitochondrial aspartate aminotransferase". Journal of Molecular Biology. 227 (1): 197–213. doi:10.1016/0022-2836(92)90691-C. PMID 1522585.197-213&rft.date=1992-09&rft_id=info:doi/10.1016/0022-2836(92)90691-C&rft_id=info:pmid/1522585&rft.aulast=McPhalen&rft.aufirst=CA&rft.au=Vincent, MG&rft.au=Picot, D&rft.au=Jansonius, JN&rft.au=Lesk, AM&rft.au=Chothia, C&rfr_id=info:sid/en.wikipedia.org:Aspartate transaminase" class="Z3988">
- ^ Hirotsu K, Goto M, Okamoto A, Miyahara I (2005). "Dual substrate recognition of aminotransferases". Chemical Record. 5 (3): 160–172. doi:10.1002/tcr.20042. PMID 15889412.160-172&rft.date=2005&rft_id=info:doi/10.1002/tcr.20042&rft_id=info:pmid/15889412&rft.aulast=Hirotsu&rft.aufirst=K&rft.au=Goto, M&rft.au=Okamoto, A&rft.au=Miyahara, I&rfr_id=info:sid/en.wikipedia.org:Aspartate transaminase" class="Z3988">
- ^ Kochhar S, Christen P (February 1992). "Mechanism of racemization of amino acids by aspartate aminotransferase". European Journal of Biochemistry. 203 (3): 563–569. doi:10.1111/j.1432-1033.1992.tb16584.x. PMID 1735441.563-569&rft.date=1992-02&rft_id=info:doi/10.1111/j.1432-1033.1992.tb16584.x&rft_id=info:pmid/1735441&rft.aulast=Kochhar&rft.aufirst=S&rft.au=Christen, P&rft_id=https://doi.org/10.1111%2Fj.1432-1033.1992.tb16584.x&rfr_id=info:sid/en.wikipedia.org:Aspartate transaminase" class="Z3988">
- ^ Goldberg JM, Kirsch JF (April 1996). "The reaction catalyzed by Escherichia coli aspartate aminotransferase has multiple partially rate-determining steps, while that catalyzed by the Y225F mutant is dominated by ketimine hydrolysis". Biochemistry. 35 (16): 5280–5291. doi:10.1021/bi952138d. PMID 8611515.5280-5291&rft.date=1996-04&rft_id=info:doi/10.1021/bi952138d&rft_id=info:pmid/8611515&rft.aulast=Goldberg&rft.aufirst=JM&rft.au=Kirsch, JF&rfr_id=info:sid/en.wikipedia.org:Aspartate transaminase" class="Z3988">
- ^ Hayashi H, Mizuguchi H, Miyahara I, Nakajima Y, Hirotsu K, Kagamiyama H (March 2003). "Conformational change in aspartate aminotransferase on substrate binding induces strain in the catalytic group and enhances catalysis". The Journal of Biological Chemistry. 278 (11): 9481–9488. doi:10.1074/jbc.M209235200. PMID 12488449.9481-9488&rft.date=2003-03&rft_id=info:doi/10.1074/jbc.M209235200&rft_id=info:pmid/12488449&rft.aulast=Hayashi&rft.aufirst=H&rft.au=Mizuguchi, H&rft.au=Miyahara, I&rft.au=Nakajima, Y&rft.au=Hirotsu, K&rft.au=Kagamiyama, H&rft_id=https://doi.org/10.1074%2Fjbc.M209235200&rfr_id=info:sid/en.wikipedia.org:Aspartate transaminase" class="Z3988">
- ^ "AST/ALT". www.rnceus.com.
- ^ Gaze DC (September 2007). "The role of existing and novel cardiac biomarkers for cardioprotection". Current Opinion in Investigational Drugs. 8 (9): 711–717. PMID 17729182.711-717&rft.date=2007-09&rft_id=info:pmid/17729182&rft.aulast=Gaze&rft.aufirst=DC&rfr_id=info:sid/en.wikipedia.org:Aspartate transaminase" class="Z3988">
- ^ GPnotebook > reference range (AST) Retrieved on Dec 7, 2009 Archived 7 January 2017 at the Wayback Machine
Further reading
edit- Jansonius JN, Vincent (1987). "Structural basis for catalysis by aspartate aminotransferase". In Jurnak FA, McPherson A (eds.). Biological Macromolecules and Assemblies. Vol. 3. New York: Wiley. pp. 187–285. ISBN 978-0-471-85142-4.187-285&rft.pub=Wiley&rft.date=1987&rft.isbn=978-0-471-85142-4&rft.aulast=Jansonius&rft.aufirst=JN&rft.au=Vincent&rfr_id=info:sid/en.wikipedia.org:Aspartate transaminase" class="Z3988">
- Kuramitsu S, Okuno S, Ogawa T, Ogawa H, Kagamiyama H (April 1985). "Aspartate aminotransferase of Escherichia coli: nucleotide sequence of the aspC gene". Journal of Biochemistry. 97 (4): 1259–1262. doi:10.1093/oxfordjournals.jbchem.a135173. PMID 3897210.1259-1262&rft.date=1985-04&rft_id=info:doi/10.1093/oxfordjournals.jbchem.a135173&rft_id=info:pmid/3897210&rft.aulast=Kuramitsu&rft.aufirst=S&rft.au=Okuno, S&rft.au=Ogawa, T&rft.au=Ogawa, H&rft.au=Kagamiyama, H&rfr_id=info:sid/en.wikipedia.org:Aspartate transaminase" class="Z3988">
- Kondo K, Wakabayashi S, Yagi T, Kagamiyama H (July 1984). "The complete amino acid sequence of aspartate aminotransferase from Escherichia coli: sequence comparison with pig isoenzymes". Biochemical and Biophysical Research Communications. 122 (1): 62–67. doi:10.1016/0006-291X(84)90439-X. PMID 6378205.62-67&rft.date=1984-07&rft_id=info:doi/10.1016/0006-291X(84)90439-X&rft_id=info:pmid/6378205&rft.aulast=Kondo&rft.aufirst=K&rft.au=Wakabayashi, S&rft.au=Yagi, T&rft.au=Kagamiyama, H&rfr_id=info:sid/en.wikipedia.org:Aspartate transaminase" class="Z3988">
- Inoue K, Kuramitsu S, Okamoto A, Hirotsu K, Higuchi T, Kagamiyama H (August 1991). "Site-directed mutagenesis of Escherichia coli aspartate aminotransferase: role of Tyr70 in the catalytic processes". Biochemistry. 30 (31): 7796–7801. doi:10.1021/bi00245a019. PMID 1868057.7796-7801&rft.date=1991-08&rft_id=info:doi/10.1021/bi00245a019&rft_id=info:pmid/1868057&rft.aulast=Inoue&rft.aufirst=K&rft.au=Kuramitsu, S&rft.au=Okamoto, A&rft.au=Hirotsu, K&rft.au=Higuchi, T&rft.au=Kagamiyama, H&rfr_id=info:sid/en.wikipedia.org:Aspartate transaminase" class="Z3988">
External links
edit- Aspartate Transaminase at the U.S. National Library of Medicine Medical Subject Headings (MeSH)
- AST - Lab Tests Online
- AST: MedlinePlus Medical Encyclopedia