In logic, a rule of replacement[1][2][3] is a transformation rule that may be applied to only a particular segment of an expression. A logical system may be constructed so that it uses either axioms, rules of inference, or both as transformation rules for logical expressions in the system. Whereas a rule of inference is always applied to a whole logical expression, a rule of replacement may be applied to only a particular segment. Within the context of a logical proof, logically equivalent expressions may replace each other. Rules of replacement are used in propositional logic to manipulate propositions.

Common rules of replacement include de Morgan's laws, commutation, association, distribution, double negation,[a] transposition, material implication, logical equivalence, exportation, and tautology.

Table: Rules of Replacement

edit

The rules above can be summed up in the following table.[4] The "Tautology" column shows how to interpret the notation of a given rule.

Rules of inference Tautology Name
    Associative
    Commutative
    Exportation
    Transposition or contraposition law
    Material implication
    Distributive
    Conjunction
    Double negation introduction
    Double negation elimination

See also

edit

Notes

edit
  1. ^ not admitted in intuitionistic logic

References

edit
  1. ^ Copi, Irving M.; Cohen, Carl (2005). Introduction to Logic. Prentice Hall.
  2. ^ Hurley, Patrick (1991). A Concise Introduction to Logic 4th edition. Wadsworth Publishing. ISBN 9780534145156.
  3. ^ Moore and Parker [full citation needed]
  4. ^ Kenneth H. Rosen: Discrete Mathematics and its Applications, Fifth Edition, p. 58.