Sheaf on an algebraic stack
In algebraic geometry, a quasi-coherent sheaf on an algebraic stack is a generalization of a quasi-coherent sheaf on a scheme. The most concrete description is that it is a data that consists of, for each a scheme S in the base category and in , a quasi-coherent sheaf on S together with maps implementing the compatibility conditions among 's.
For a Deligne–Mumford stack, there is a simpler description in terms of a presentation : a quasi-coherent sheaf on is one obtained by descending a quasi-coherent sheaf on U.[1] A quasi-coherent sheaf on a Deligne–Mumford stack generalizes an orbibundle (in a sense).
Constructible sheaves (e.g., as ℓ-adic sheaves) can also be defined on an algebraic stack and they appear as coefficients of cohomology of a stack.
Definition
editThe following definition is (Arbarello, Cornalba & Griffiths 2011, Ch. XIII., Definition 2.1.)
Let be a category fibered in groupoids over the category of schemes of finite type over a field with the structure functor p. Then a quasi-coherent sheaf on is the data consisting of:
- for each object , a quasi-coherent sheaf on the scheme ,
- for each morphism in and in the base category, an isomorphism
- satisfying the cocycle condition: for each pair ,
- equals .
(cf. equivariant sheaf.)
Examples
edit- The Hodge bundle on the moduli stack of algebraic curves of fixed genus.
ℓ-adic formalism
editThis section needs expansion. You can help by adding to it. (April 2019) |
The ℓ-adic formalism (theory of ℓ-adic sheaves) extends to algebraic stacks.
See also
edit- Hopf algebroid - encodes the data of quasi-coherent sheaves on a prestack presentable as a groupoid internal to affine schemes (or projective schemes using graded Hopf algebroids)
Notes
edit- ^ Arbarello, Cornalba & Griffiths 2011, Ch. XIII., § 2.
References
edit- Arbarello, Enrico; Griffiths, Phillip (2011). Geometry of algebraic curves. Vol. II, with a contribution by Joseph Daniel Harris. Grundlehren der mathematischen Wissenschaften. Vol. 268. doi:10.1007/978-3-540-69392-5. ISBN 978-3-540-42688-2. MR 2807457.
- Behrend, Kai A. (2003). "Derived 𝑙-adic categories for algebraic stacks". Memoirs of the American Mathematical Society. 163 (774). doi:10.1090/memo/0774.
- Laumon, Gérard; Moret-Bailly, Laurent (2000). Champs algébriques. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Vol. 39. Berlin, New York: Springer-Verlag. doi:10.1007/978-3-540-24899-6. ISBN 978-3-540-65761-3. MR 1771927.
- Olsson, Martin (2007). "Sheaves on Artin stacks". Journal für die reine und angewandte Mathematik (Crelle's Journal). 2007 (603): 55–112. doi:10.1515/CRELLE.2007.012. S2CID 15445962.55-112&rft.date=2007&rft_id=info:doi/10.1515/CRELLE.2007.012&rft_id=https://api.semanticscholar.org/CorpusID:15445962#id-name=S2CID&rft.aulast=Olsson&rft.aufirst=Martin&rfr_id=info:sid/en.wikipedia.org:Sheaf on an algebraic stack" class="Z3988"> Editorial note: This paper corrects a mistake in Laumon and Moret-Bailly's Champs algébriques.
- Rydh, David (2016). "Approximation of Sheaves on Algebraic Stacks". International Mathematics Research Notices. 2016 (3): 717–737. arXiv:1408.6698. doi:10.1093/imrn/rnv142.717-737&rft.date=2016&rft_id=info:arxiv/1408.6698&rft_id=info:doi/10.1093/imrn/rnv142&rft.aulast=Rydh&rft.aufirst=David&rfr_id=info:sid/en.wikipedia.org:Sheaf on an algebraic stack" class="Z3988">
External links
edit- https://mathoverflow.net/questions/69035/the-category-of-l-adic-sheaves
- http://math.stanford.edu/~conrad/Weil2seminar/Notes/L16.pdf Adic Formalism, Part 2 Brian Lawrence March 1, 2017