In mathematics, Pugh's closing lemma is a result that links periodic orbit solutions of differential equations to chaotic behaviour. It can be formally stated as follows:

Let be a diffeomorphism of a compact smooth manifold . Given a nonwandering point of , there exists a diffeomorphism arbitrarily close to in the topology of such that is a periodic point of .[1]

Interpretation

edit

Pugh's closing lemma means, for example, that any chaotic set in a bounded continuous dynamical system corresponds to a periodic orbit in a different but closely related dynamical system. As such, an open set of conditions on a bounded continuous dynamical system that rules out periodic behaviour also implies that the system cannot behave chaotically; this is the basis of some autonomous convergence theorems.

See also

edit

References

edit
  1. ^ Pugh, Charles C. (1967). "An Improved Closing Lemma and a General Density Theorem". American Journal of Mathematics. 89 (4): 1010–1021. doi:10.2307/2373414. JSTOR 2373414.1010-1021&rft.date=1967&rft_id=info:doi/10.2307/2373414&rft_id=https://www.jstor.org/stable/2373414#id-name=JSTOR&rft.aulast=Pugh&rft.aufirst=Charles C.&rfr_id=info:sid/en.wikipedia.org:Pugh's closing lemma" class="Z3988">

Further reading

edit
  • Araújo, Vítor; Pacifico, Maria José (2010). Three-Dimensional Flows. Berlin: Springer. ISBN 978-3-642-11414-4.

This article incorporates material from Pugh's closing lemma on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.