PTAS reduction

(Redirected from Ptas reduction)

In computational complexity theory, a PTAS reduction is an approximation-preserving reduction that is often used to perform reductions between solutions to optimization problems. It preserves the property that a problem has a polynomial time approximation scheme (PTAS) and is used to define completeness for certain classes of optimization problems such as APX. Notationally, if there is a PTAS reduction from a problem A to a problem B, we write .

With ordinary polynomial-time many-one reductions, if we can describe a reduction from a problem A to a problem B, then any polynomial-time solution for B can be composed with that reduction to obtain a polynomial-time solution for the problem A. Similarly, our goal in defining PTAS reductions is so that given a PTAS reduction from an optimization problem A to a problem B, a PTAS for B can be composed with the reduction to obtain a PTAS for the problem A.[1]

Definition

edit

Formally, we define a PTAS reduction from A to B using three polynomial-time computable functions, f, g, and α, with the following properties:

  • f maps instances of problem A to instances of problem B.
  • g takes an instance x of problem A, an approximate solution to the corresponding problem   in B, and an error parameter ε and produces an approximate solution to x.
  • α maps error parameters for solutions to instances of problem A to error parameters for solutions to problem B.
  • If the solution y to   (an instance of problem B) is at most   times worse than the optimal solution, then the corresponding solution   to x (an instance of problem A) is at most   times worse than the optimal solution.

Properties

edit

From the definition it is straightforward to show that:

  •   and  
  •   and  

L-reductions imply PTAS reductions. As a result, one may show the existence of a PTAS reduction via a L-reduction instead.[1]

PTAS reductions are used to define completeness in APX, the class of optimization problems with constant-factor approximation algorithms.

See also

edit

References

edit
  1. ^ a b Crescenzi, Pierluigi (1997). "A short guide to approximation preserving reductions". Proceedings of Computational Complexity. Twelfth Annual IEEE Conference. Washington, D.C.: IEEE Computer Society. pp. 262–273. doi:10.1109/CCC.1997.612321. ISBN 0-8186-7907-7. S2CID 18911241.262-273&rft.pub=IEEE Computer Society&rft.date=1997&rft_id=https://api.semanticscholar.org/CorpusID:18911241#id-name=S2CID&rft_id=info:doi/10.1109/CCC.1997.612321&rft.isbn=0-8186-7907-7&rft.aulast=Crescenzi&rft.aufirst=Pierluigi&rft_id=https://scholar.archive.org/work/lksautq5erevpkljbei674cjla&rfr_id=info:sid/en.wikipedia.org:PTAS reduction" class="Z3988">