In mathematics, the Prouhet–Tarry–Escott problem asks for two disjoint multisets A and B of n integers each, whose first k power sum symmetric polynomials are all equal. That is, the two multisets should satisfy the equations
for each integer i from 1 to a given k. It has been shown that n must be strictly greater than k. Solutions with are called ideal solutions. Ideal solutions are known for and for . No ideal solution is known for or for .[1]
This problem was named after Eugène Prouhet, who studied it in the early 1850s, and Gaston Tarry and Edward B. Escott, who studied it in the early 1910s. The problem originates from letters of Christian Goldbach and Leonhard Euler (1750/1751).
Examples
editIdeal solutions
editAn ideal solution for n = 6 is given by the two sets { 0, 5, 6, 16, 17, 22 } and { 1, 2, 10, 12, 20, 21 }, because:
- 01 51 61 161 171 221 = 11 21 101 121 201 211
- 02 52 62 162 172 222 = 12 22 102 122 202 212
- 03 53 63 163 173 223 = 13 23 103 123 203 213
- 04 54 64 164 174 224 = 14 24 104 124 204 214
- 05 55 65 165 175 225 = 15 25 105 125 205 215.
For n = 12, an ideal solution is given by A = {±22, ±61, ±86, ±127, ±140, ±151} and B = {±35, ±47, ±94, ±121, ±146, ±148}.[2]
Other solutions
editProuhet used the Thue–Morse sequence to construct a solution with for any . Namely, partition the numbers from 0 to into a) the numbers each with an even number of ones in its binary expansion and b) the numbers each with an odd number of ones in its binary expansion; then the two sets of the partition give a solution to the problem.[3] For instance, for and , Prouhet's solution is:
- 01 31 51 61 91 101 121 151 = 11 21 41 71 81 111 131 141
- 02 32 52 62 92 102 122 152 = 12 22 42 72 82 112 132 142
- 03 33 53 63 93 103 123 153 = 13 23 43 73 83 113 133 143.
Generalizations
editA higher dimensional version of the Prouhet–Tarry–Escott problem has been introduced and studied by Andreas Alpers and Robert Tijdeman in 2007: Given parameters , find two different multi-sets , of points from such that
for all with This problem is related to discrete tomography and also leads to special Prouhet-Tarry-Escott solutions over the Gaussian integers (though solutions to the Alpers-Tijdeman problem do not exhaust the Gaussian integer solutions to Prouhet-Tarry-Escott).
A solution for and is given, for instance, by:
- and
- .
No solutions for with are known.
See also
edit- Euler's sum of powers conjecture
- Beal's conjecture
- Jacobi–Madden equation
- Lander, Parkin, and Selfridge conjecture
- Taxicab number
- Pythagorean quadruple
- Sums of powers, a list of related conjectures and theorems
- Discrete tomography
Notes
edit- ^ Borwein 2002, p. 85.
- ^ Solution found by Nuutti Kuosa, Jean-Charles Meyrignac and Chen Shuwen, in 1999.
- ^ Wright, E. M. (1959), "Prouhet's 1851 solution of the Tarry–Escott problem of 1910", The American Mathematical Monthly, 66: 199–201, doi:10.2307/2309513, MR 0104622199-201&rft.date=1959&rft_id=info:doi/10.2307/2309513&rft_id=https://mathscinet.ams.org/mathscinet-getitem?mr=0104622#id-name=MR&rft.aulast=Wright&rft.aufirst=E. M.&rfr_id=info:sid/en.wikipedia.org:Prouhet–Tarry–Escott problem" class="Z3988">.
References
edit- Borwein, Peter B. (2002), "The Prouhet–Tarry–Escott problem", Computational Excursions in Analysis and Number Theory, CMS Books in Mathematics, Springer-Verlag, pp. 85–96, ISBN 0-387-95444-9, retrieved 2009-06-1685-96&rft.pub=Springer-Verlag&rft.date=2002&rft.isbn=0-387-95444-9&rft.aulast=Borwein&rft.aufirst=Peter B.&rft_id=https://books.google.com/books?id=A_ITwN13J6YC&pg=85#PPA85,M1&rfr_id=info:sid/en.wikipedia.org:Prouhet–Tarry–Escott problem" class="Z3988"> Chap.11.
- Alpers, Andreas; Rob Tijdeman (2007), "The Two-Dimensional Prouhet-Tarry-Escott Problem" (PDF), Journal of Number Theory, 123 (2): 403–412, doi:10.1016/j.jnt.2006.07.001, retrieved 2015-04-01403-412&rft.date=2007&rft_id=info:doi/10.1016/j.jnt.2006.07.001&rft.aulast=Alpers&rft.aufirst=Andreas&rft.au=Rob Tijdeman&rft_id=http://www.math.leidenuniv.nl/~tijdeman/altijd.pdf&rfr_id=info:sid/en.wikipedia.org:Prouhet–Tarry–Escott problem" class="Z3988">.