The proton radius puzzle is an unanswered problem in physics relating to the size of the proton.[1] Historically the proton charge radius was measured by two independent methods, which converged to a value of about 0.877 femtometres (1 fm = 10−15 m). This value was challenged by a 2010 experiment using a third method, which produced a radius about 4% smaller than this, at 0.842 femtometres.[2] New experimental results reported in the autumn of 2019 agree with the smaller measurement, as does a re-analysis of older data published in 2022. While some believe that this difference has been resolved,[3][4] this opinion is not yet universally held.[5][6]
Radius definition
editThe radius of the proton is defined by a formula which can be calculated by quantum electrodynamics and be derived from either atomic spectroscopy or by electron–proton scattering. The formula involves a form-factor related to the two-dimensional parton diameter of the proton.[7]
Problem
editPrior to 2010, the proton charge radius was measured using one of two methods: one relying on spectroscopy, and one relying on nuclear scattering.[8]
Spectroscopy method
editThe spectroscopy method compares the energy levels of spherically symmetric 2s orbitals to asymmetric 2p orbitals of hydrogen, a difference known as the Lamb shift. The exact values of the energy levels are sensitive to the distribution of charge in the nucleus since the 2s levels overlap more with the nucleus.[9] Measurements of hydrogen's energy levels are now so precise that the accuracy of the proton radius is the limiting factor when comparing experimental results to theoretical calculations. This method produces a proton radius of about 0.8768(69) fm, with approximately 1% relative uncertainty.[2]
Electron–proton scattering
editSimilar to Rutherford's scattering experiments that established the existence of the nucleus, modern electron–proton scattering experiments send beams of high energy electrons into 20cm long tube of liquid hydrogen.[10] The resulting angular distribution of the electron and proton are analyzed to produce a value for the proton charge radius. Consistent with the spectroscopy method, this produces a proton radius of about 0.8775(5) fm.[11]
2010 experiment
editIn 2010, Pohl et al. published the results of an experiment relying on muonic hydrogen as opposed to normal hydrogen. Conceptually, this is similar to the spectroscopy method. However, the much higher mass of a muon causes it to orbit 207 times closer than an electron to the hydrogen nucleus, where it is consequently much more sensitive to the size of the proton. The resulting radius was recorded as 0.842(1) fm, 5 standard deviations (5σ) smaller than the prior measurements.[2] The newly measured radius is 4% smaller than the prior measurements, which were believed to be accurate within 1%. (The new measurement's uncertainty limit of only 0.1% makes a negligible contribution to the discrepancy.)[12]
A follow-up experiment by Pohl et al. in August 2016 used a deuterium atom to create muonic deuterium and measured the deuteron radius. This experiment allowed the measurements to be 2.7 times more accurate, but also found a discrepancy of 7.5 standard deviations smaller than the expected value.[13][14]
Proposed resolutions
editThe anomaly remains unresolved and is an active area of research. There is as yet no conclusive reason to doubt the validity of the old data.[8] The immediate concern is for other groups to reproduce the anomaly.[8]
The uncertain nature of the experimental evidence has not stopped theorists from attempting to explain the conflicting results. Among the postulated explanations are the three-body force,[15] interactions between gravity and the weak force, or a flavour-dependent interaction,[16][17] higher dimension gravity,[18] a new boson,[19] and the quasi-free
π
hypothesis.[20]
Measurement artefact
editRandolf Pohl, the original investigator of the puzzle, stated that while it would be "fantastic" if the puzzle led to a discovery, the most likely explanation is not new physics but some measurement artefact. His personal assumption is that past measurements have misgauged the Rydberg constant and that the current official proton size is inaccurate.[21]
Quantum chromodynamic calculation
editIn a paper by Belushkin et al. (2007),[22] including different constraints and perturbative quantum chromodynamics, a smaller proton radius than the then-accepted 0.877 femtometres was predicted.[22]
Proton radius extrapolation
editPapers from 2016 suggested that the problem was with the extrapolations that had typically been used to extract the proton radius from the electron scattering data[23][24][25] though these explanation would require that there was also a problem with the atomic Lamb shift measurements.
Data analysis method
editIn one of the attempts to resolve the puzzle without new physics, Alarcón et al. (2018)[26] of Jefferson Lab have proposed that a different technique to fit the experimental scattering data, in a theoretically as well as analytically justified manner, produces a proton charge radius from the existing electron scattering data that is consistent with the muonic hydrogen measurement.[26] Effectively, this approach attributes the cause of the proton radius puzzle to a failure to use a theoretically motivated function for the extraction of the proton charge radius from the experimental data. Another recent paper has pointed out how a simple, yet theory-motivated change to previous fits will also give the smaller radius.[27]
More recent spectroscopic measurements
editIn 2017 a new approach using a cryogenic hydrogen and Doppler-free laser excitation to prepare the source for spectroscopic measurements; this gave results ~5% smaller than the previously accepted spectroscopic values with much smaller statistical errors.[8][28][9] This result was close to the 2010 muon spectroscopy result. These authors suggest that the older spectroscopic analysis did not include quantum interference effects that alter the shape of the hydrogen lines.
In 2019, another experiment for the spectroscopy Lamb shift used a variation of Ramsey interferometry that does not require the Rydberg constant to analyze. Its result, 0.833 fm, agreed with the smaller 2010 value once more.[29][9]
More recent electron–proton scattering measurements
editAlso in 2019 W. Xiong et al. reported a similar result using extremely low momentum transfer electron scattering.[30]
Their results support the smaller proton charge radius, but do not explain why the results before 2010 came out larger. It is likely future experiments will be able to both explain and settle the proton radius puzzle.[31]
2022 analysis
editA re-analysis of experimental data, published in February 2022, found a result consistent with the smaller value of approximately 0.84 fm.[32][33]
References
edit- ^ Krauth, J. J.; Schuhmann, K.; Abdou Ahmed, M.; Amaro, F. D.; Amaro, P.; et al. (2 June 2017). The proton radius puzzle. 52nd Rencontres de Moriond EW 2017. La Thuile, Aosta Valley. arXiv:1706.00696. Bibcode:2017arXiv170600696K. Presentation slides (19 March 2017).
- ^ a b c Pohl R, Antognini A, Nez F, Amaro FD, Biraben F, et al. (July 2010). "The size of the proton" (PDF). Nature. 466 (7303): 213–216. Bibcode:2010Natur.466..213P. doi:10.1038/nature09250. PMID 20613837. S2CID 4424731.213-216&rft.date=2010-07&rft_id=info:doi/10.1038/nature09250&rft_id=https://api.semanticscholar.org/CorpusID:4424731#id-name=S2CID&rft_id=info:pmid/20613837&rft_id=info:bibcode/2010Natur.466..213P&rft.aulast=Pohl&rft.aufirst=R&rft.au=Antognini, A&rft.au=Nez, F&rft.au=Amaro, FD&rft.au=Biraben, F&rft.au=Cardoso, JM&rft.au=Covita, DS&rft.au=Dax, A&rft.au=Dhawan, S&rft.au=Fernandes, LM&rft.au=Giesen, A&rft.au=Graf, T&rft.au=Hänsch, TW&rft.au=Indelicato, P&rft.au=Julien, L&rft.au=Kao, C&rft.au=Knowles, P&rft.au=Le Bigot, E&rft.au=Liu, Y&rft.au=Lopes, JA&rft.au=Ludhova, L&rft.au=Monteiro, CM&rft.au=Mulhauser, F&rft.au=Nebel, T&rft.au=Rabinowitz, P&rft.au=dos Santos, JM&rft.au=Schaller, LA&rft.au=Schuhmann, K&rft.au=Schwob, C&rft.au=Taqqu, D&rft.au=Veloso, JF&rft.au=Kottman, F&rft_id=http://www.quantum.physik.uni-potsdam.de/teaching/ss2015/pqt/Pohl2010.pdf&rfr_id=info:sid/en.wikipedia.org:Proton radius puzzle" class="Z3988">
- ^ Hammer, Hans-Werner; Meißner, Ulf-G. (2020). "The proton radius: From a puzzle to precision". Science Bulletin. 65 (4): 257–258. arXiv:1912.03881. Bibcode:2020SciBu..65..257H. doi:10.1016/j.scib.2019.12.012. PMID 36659086. S2CID 208909979.257-258&rft.date=2020&rft_id=https://api.semanticscholar.org/CorpusID:208909979#id-name=S2CID&rft_id=info:bibcode/2020SciBu..65..257H&rft_id=info:arxiv/1912.03881&rft_id=info:pmid/36659086&rft_id=info:doi/10.1016/j.scib.2019.12.012&rft.aulast=Hammer&rft.aufirst=Hans-Werner&rft.au=Meißner, Ulf-G.&rft_id=http://inspirehep.net/record/1769185&rfr_id=info:sid/en.wikipedia.org:Proton radius puzzle" class="Z3988">
- ^ R.L. Workman et al. (Particle Data Group), Prog.Theor.Exp.Phys. 2022, 083C01 (2022), The Review of Particle Physics (2022), Particle listing – Proton, page 7: "the puzzle appears to be resolved."
- ^ Karr, Jean-Philippe; Marchand, Dominique (2019). "Progress on the proton-radius puzzle". Nature. 575 (7781): 61–62. Bibcode:2019Natur.575...61K. doi:10.1038/d41586-019-03364-z. PMID 31695215.61-62&rft.date=2019&rft_id=info:pmid/31695215&rft_id=info:doi/10.1038/d41586-019-03364-z&rft_id=info:bibcode/2019Natur.575...61K&rft.aulast=Karr&rft.aufirst=Jean-Philippe&rft.au=Marchand, Dominique&rft_id=https://doi.org/10.1038%2Fd41586-019-03364-z&rfr_id=info:sid/en.wikipedia.org:Proton radius puzzle" class="Z3988">
- ^ Hill, Heather (6 November 2019). "Proton radius puzzle may be solved". Physics Today (11). doi:10.1063/PT.6.1.20191106a. ISSN 1945-0699. S2CID 241132004.
- ^ Miller, Gerald A. (2019-03-07). "Defining the proton radius: A unified treatment". Physical Review C. 99 (3): 035202. arXiv:1812.02714. Bibcode:2019PhRvC..99c5202M. doi:10.1103/PhysRevC.99.035202. ISSN 2469-9985.
- ^ a b c d Davide Castelvecchi (5 October 2017). "Proton-size puzzle deepens". Nature. doi:10.1038/nature.2017.22760.
- ^ a b c Karr, Jean-Philippe; Marchand, Dominique; Voutier, Eric (November 2020). "The proton size". Nature Reviews Physics. 2 (11): 601–614. Bibcode:2020NatRP...2..601K. doi:10.1038/s42254-020-0229-x. ISSN 2522-5820.601-614&rft.date=2020-11&rft.issn=2522-5820&rft_id=info:doi/10.1038/s42254-020-0229-x&rft_id=info:bibcode/2020NatRP...2..601K&rft.aulast=Karr&rft.aufirst=Jean-Philippe&rft.au=Marchand, Dominique&rft.au=Voutier, Eric&rft_id=https://www.nature.com/articles/s42254-020-0229-x&rfr_id=info:sid/en.wikipedia.org:Proton radius puzzle" class="Z3988">
- ^ Walker, R. C.; Filippone, B. W.; Jourdan, J.; Milner, R.; McKeown, R.; Potterveld, D.; Andivahis, L.; Arnold, R.; Benton, D.; Bosted, P.; deChambrier, G.; Lung, A.; Rock, S. E.; Szalata, Z. M.; Para, A. (1994-06-01). "Measurements of the proton elastic form factors for 1 ≤ Q2 ≤ 3 (GeV/c)2 at SLAC". Physical Review D. 49 (11): 5671–5689. doi:10.1103/PhysRevD.49.5671. ISSN 0556-2821.1 ≤ Q2 ≤ 3 (GeV/c)2 at SLAC&rft.volume=49&rft.issue=11&rft.pages=5671-5689&rft.date=1994-06-01&rft_id=info:doi/10.1103/PhysRevD.49.5671&rft.issn=0556-2821&rft.aulast=Walker&rft.aufirst=R. C.&rft.au=Filippone, B. W.&rft.au=Jourdan, J.&rft.au=Milner, R.&rft.au=McKeown, R.&rft.au=Potterveld, D.&rft.au=Andivahis, L.&rft.au=Arnold, R.&rft.au=Benton, D.&rft.au=Bosted, P.&rft.au=deChambrier, G.&rft.au=Lung, A.&rft.au=Rock, S. E.&rft.au=Szalata, Z. M.&rft.au=Para, A.&rft_id=https://link.aps.org/doi/10.1103/PhysRevD.49.5671&rfr_id=info:sid/en.wikipedia.org:Proton radius puzzle" class="Z3988">
- ^ Sick I, Trautmann D (2014). "Proton root-mean-square radii and electron scattering". Physical Review C. 89 (1): 012201. arXiv:1407.1676. Bibcode:2014PhRvC..89a2201S. doi:10.1103/PhysRevC.89.012201. S2CID 118615444.
- ^ Carlson CE (May 2015). "The proton radius puzzle". Progress in Particle and Nuclear Physics. 82: 59–77. arXiv:1502.05314. Bibcode:2015PrPNP..82...59C. doi:10.1016/j.ppnp.2015.01.002. S2CID 54915587.59-77&rft.date=2015-05&rft_id=info:arxiv/1502.05314&rft_id=https://api.semanticscholar.org/CorpusID:54915587#id-name=S2CID&rft_id=info:doi/10.1016/j.ppnp.2015.01.002&rft_id=info:bibcode/2015PrPNP..82...59C&rft.aulast=Carlson&rft.aufirst=CE&rfr_id=info:sid/en.wikipedia.org:Proton radius puzzle" class="Z3988">
- ^ Pohl R, et al. (2016). "Laser spectroscopy of muonic deuterium". Science. 353 (6300): 669–673. Bibcode:2016Sci...353..669P. doi:10.1126/science.aaf2468. hdl:10316/80061. PMID 27516595. S2CID 206647315.669-673&rft.date=2016&rft_id=info:hdl/10316/80061&rft_id=https://api.semanticscholar.org/CorpusID:206647315#id-name=S2CID&rft_id=info:bibcode/2016Sci...353..669P&rft_id=info:pmid/27516595&rft_id=info:doi/10.1126/science.aaf2468&rft.aulast=Pohl&rft.aufirst=R&rft.au=Nez, F&rft.au=Fernandes, LM&rft.au=Amaro, FD&rft.au=Biraben, F&rft.au=Cardoso, JM&rft.au=Covita, DS&rft.au=Dax, A&rft.au=Dhawan, S&rft.au=Diepold, M&rft.au=Giesen, A&rft.au=Gouvea, AL&rft.au=Graf, T&rft.au=Hänsch, TW&rft.au=Indelicato, P&rft.au=Julien, L&rft.au=Knowles, P&rft.au=Kottmann, F&rft.au=Le Bigot, E&rft.au=Liu, Y&rft.au=Lopes, JA&rft.au=Ludhova, L&rft.au=Monteiro, CM&rft.au=Mulhauser, F&rft.au=Nebel, T&rft.au=Rabinowitz, P&rft.au=dos Santos, JM&rft.au=Schaller, LA&rft.au=Schuhmann, K&rft.au=Schwob, C&rft.au=Taqqu, D&rft.au=Veloso, JF&rft.au=Antognini, A&rfr_id=info:sid/en.wikipedia.org:Proton radius puzzle" class="Z3988">
- ^ "Proton-radius puzzle deepens". CERN Courier. 16 September 2016.
After our first study came out in 2010, I was afraid some veteran physicist would get in touch with us and point out our great blunder. But the years have passed, and so far nothing of the kind has happened.
- ^ Karr, J.; Hilico, L. (2012). "Why three-body physics does not solve the proton-radius puzzle". Physical Review Letters. 109 (10): 103401. arXiv:1205.0633. Bibcode:2012PhRvL.109j3401K. doi:10.1103/PhysRevLett.109.103401. PMID 23005286. S2CID 12752418.
- ^ Onofrio, R. (2013). "Proton radius puzzle and quantum gravity at the Fermi scale". EPL. 104 (2): 20002. arXiv:1312.3469. Bibcode:2013EL....10420002O. doi:10.1209/0295-5075/104/20002. S2CID 119243863.
- ^ Zyga, Lisa (November 26, 2013). "Proton radius puzzle may be solved by quantum gravity". Phys.org. Retrieved September 2, 2016.
- ^ Dahia, F.; Lemos, A.S. (2016). "Is the proton radius puzzle evidence of extra dimensions?". European Physical Journal. 76 (8): 435. arXiv:1509.08735. Bibcode:2016EPJC...76..435D. doi:10.1140/epjc/s10052-016-4266-7. S2CID 118672005.
- ^ Liu Y, McKeen D, Miller GA (2016). "Electrophobic Scalar Boson and Muonic Puzzles". Physical Review Letters. 117 (10): 101801. arXiv:1605.04612. Bibcode:2016PhRvL.117j1801L. doi:10.1103/PhysRevLett.117.101801. PMID 27636468. S2CID 20961564.
- ^ Lestone, J.P. (4 October 2017). Muonic atom Lamb shift via simple means (Report). Los Alamos Report. Los Alamos National Laboratory. LA-UR-17-29148.
- ^ Wolchover, Natalie (11 August 2016). "New measurement deepens proton puzzle". Quanta Magazine. Retrieved 2 September 2016.
- ^ a b Belushkin, M.A.; Hammer, H.-W.; Meißner, Ulf-G. (2007). "Dispersion analysis of the nucleon form factors including meson continua". Physical Review C. 75 (3): 035202. arXiv:hep-ph/0608337. Bibcode:2007PhRvC..75c5202B. doi:10.1103/PhysRevC.75.035202. ISSN 0556-2813. S2CID 42995123.
- ^ Higinbotham, Douglas W.; Kabir, Al Amin; Lin, Vincent; Meekins, David; Norum, Blaine; Sawatzky, Brad (31 May 2016). "Proton radius from electron scattering data". Physical Review C. 93 (5): 055207. arXiv:1510.01293. Bibcode:2016PhRvC..93e5207H. doi:10.1103/PhysRevC.93.055207.
- ^ Griffioen, Keith; Carlson, Carl; Maddox, Sarah (17 June 2016). "Consistency of electron scattering data with a small proton radius". Physical Review C. 93 (6): 065207. arXiv:1509.06676. Bibcode:2016PhRvC..93f5207G. doi:10.1103/PhysRevC.93.065207.
- ^ Horbatsch, Marko; Hessels, Eric A.; Pineda, Antonio (13 March 2017). "Proton radius from electron–proton scattering and chiral perturbation theory". Physical Review C. 95 (3): 035203. arXiv:1610.09760. Bibcode:2017PhRvC..95c5203H. doi:10.1103/PhysRevC.95.035203. S2CID 119232774.
- ^ a b Alarcón, J.M.; Higinbotham, D.W.; Weiss, C.; Ye, Zhihong (5 April 2019). "Proton charge radius extraction from electron scattering data using dispersively improved chiral effective field theory". Physical Review C. 99 (4): 044303. arXiv:1809.06373. Bibcode:2019PhRvC..99d4303A. doi:10.1103/PhysRevC.99.044303.
- ^ Barcus, Scott K.; Higinbotham, Douglas W.; McClellan, Randall E. (10 July 2020). "How analytic choices can affect the extraction of electromagnetic form factors from elastic electron scattering cross section data". Physical Review C. 102 (1): 015205. arXiv:1902.08185. Bibcode:2020PhRvC.102a5205B. doi:10.1103/PhysRevC.102.015205. S2CID 146808413.
- ^ Beyer, Axel; Maisenbacher, Lothar; Matveev, Arthur; Pohl, Randolf; Khabarova, Ksenia; Grinin, Alexey; Lamour, Tobias; Yost, Dylan C.; Hänsch, Theodor W.; Kolachevsky, Nikolai; Udem, Thomas (2017). "The Rydberg constant and proton size from atomic hydrogen". Science. 358 (6359): 79–85. Bibcode:2017Sci...358...79B. doi:10.1126/science.aah6677. PMID 28983046. S2CID 206652697.79-85&rft.date=2017&rft_id=info:doi/10.1126/science.aah6677&rft_id=https://api.semanticscholar.org/CorpusID:206652697#id-name=S2CID&rft_id=info:pmid/28983046&rft_id=info:bibcode/2017Sci...358...79B&rft.aulast=Beyer&rft.aufirst=Axel&rft.au=Maisenbacher, Lothar&rft.au=Matveev, Arthur&rft.au=Pohl, Randolf&rft.au=Khabarova, Ksenia&rft.au=Grinin, Alexey&rft.au=Lamour, Tobias&rft.au=Yost, Dylan C.&rft.au=Hänsch, Theodor W.&rft.au=Kolachevsky, Nikolai&rft.au=Udem, Thomas&rft_id=https://doi.org/10.1126%2Fscience.aah6677&rfr_id=info:sid/en.wikipedia.org:Proton radius puzzle" class="Z3988">
- ^ Bezginov, N.; Valdez, T.; Horbatsch, M.; Marsman, A.; Vutha, A. C.; Hessels, E. A. (5 September 2019). "A measurement of the atomic hydrogen Lamb shift and the proton charge radius". Science. 365 (6457): 1007–1012. Bibcode:2019Sci...365.1007B. doi:10.1126/science.aau7807. PMID 31488684. S2CID 201845158.1007-1012&rft.date=2019-09-05&rft_id=info:doi/10.1126/science.aau7807&rft_id=https://api.semanticscholar.org/CorpusID:201845158#id-name=S2CID&rft_id=info:pmid/31488684&rft_id=info:bibcode/2019Sci...365.1007B&rft.aulast=Bezginov&rft.aufirst=N.&rft.au=Valdez, T.&rft.au=Horbatsch, M.&rft.au=Marsman, A.&rft.au=Vutha, A. C.&rft.au=Hessels, E. A.&rft_id=https://doi.org/10.1126%2Fscience.aau7807&rfr_id=info:sid/en.wikipedia.org:Proton radius puzzle" class="Z3988">
- ^ Xiong, W.; Gasparian, A.; Gao, H.; Dutta, D.; Khandaker, M.; et al. (2019). "A small proton charge radius from an electron–proton scattering experiment". Nature. 575 (7781): 147–150. Bibcode:2019Natur.575..147X. doi:10.1038/s41586-019-1721-2. ISSN 0028-0836. OSTI 1575200. PMID 31695211. S2CID 207831686.147-150&rft.date=2019&rft_id=https://api.semanticscholar.org/CorpusID:207831686#id-name=S2CID&rft_id=https://www.osti.gov/biblio/1575200#id-name=OSTI&rft_id=info:bibcode/2019Natur.575..147X&rft.issn=0028-0836&rft_id=info:doi/10.1038/s41586-019-1721-2&rft_id=info:pmid/31695211&rft.aulast=Xiong&rft.aufirst=W.&rft.au=Gasparian, A.&rft.au=Gao, H.&rft.au=Dutta, D.&rft.au=Khandaker, M.&rft.au=Liyanage, N.&rft.au=Pasyuk, E.&rft.au=Peng, C.&rft.au=Bai, X.&rft.au=Ye, L.&rft.au=Gnanvo, K.&rft.au=Gu, C.&rft.au=Levillain, M.&rft.au=Yan, X.&rft.au=Higinbotham, D. W.&rft.au=Meziane, M.&rft.au=Ye, Z.&rft.au=Adhikari, K.&rft.au=Aljawrneh, B.&rft.au=Bhatt, H.&rft.au=Bhetuwal, D.&rft.au=Brock, J.&rft.au=Burkert, V.&rft.au=Carlin, C.&rft.au=Deur, A.&rft.au=Di, D.&rft.au=Dunne, J.&rft.au=Ekanayaka, P.&rft.au=El-Fassi, L.&rft.au=Emmich, B.&rft.au=Gan, L.&rft.au=Glamazdin, O.&rft.au=Kabir, M. L.&rft.au=Karki, A.&rft.au=Keith, C.&rft.au=Kowalski, S.&rft.au=Lagerquist, V.&rft.au=Larin, I.&rft.au=Liu, T.&rft.au=Liyanage, A.&rft.au=Maxwell, J.&rft.au=Meekins, D.&rft.au=Nazeer, S. J.&rft.au=Nelyubin, V.&rft.au=Nguyen, H.&rft.au=Pedroni, R.&rft.au=Perdrisat, C.&rft.au=Pierce, J.&rft.au=Punjabi, V.&rft.au=Shabestari, M.&rft.au=Shahinyan, A.&rft.au=Silwal, R.&rft.au=Stepanyan, S.&rft.au=Subedi, A.&rft.au=Tarasov, V. V.&rft.au=Ton, N.&rft.au=Zhang, Y.&rft.au=Zhao, Z. W.&rfr_id=info:sid/en.wikipedia.org:Proton radius puzzle" class="Z3988">
- ^ Karr, Jean-Philippe; Marchand, Dominique (2019). "Progress on the proton-radius puzzle". Nature. 575 (7781): 61–62. Bibcode:2019Natur.575...61K. doi:10.1038/d41586-019-03364-z. ISSN 0028-0836. PMID 31695215.61-62&rft.date=2019&rft_id=info:doi/10.1038/d41586-019-03364-z&rft.issn=0028-0836&rft_id=info:pmid/31695215&rft_id=info:bibcode/2019Natur.575...61K&rft.aulast=Karr&rft.aufirst=Jean-Philippe&rft.au=Marchand, Dominique&rft_id=https://doi.org/10.1038%2Fd41586-019-03364-z&rfr_id=info:sid/en.wikipedia.org:Proton radius puzzle" class="Z3988">
- ^ Lin, Yong-Hui; Hammer, Hans-Werner; Meißner, Ulf-G. (2022-02-03). "New Insights into the Nucleon's Electromagnetic Structure". Physical Review Letters. 128 (5): 052002. arXiv:2109.12961. Bibcode:2022PhRvL.128e2002L. doi:10.1103/PhysRevLett.128.052002. ISSN 0031-9007. PMID 35179940. S2CID 237940595.
- ^ "Protons are probably actually smaller than long thought". Universität Bonn. Retrieved 2022-02-15.