Postoperative residual curarization (PORC) or residual neuromuscular blockade (RNMB) is a residual paresis after emergence from general anesthesia that may occur with the use of neuromuscular-blocking drugs.[1][2] Today residual neuromuscular blockade is defined as a train of four ratio[3] of less than 0.9 when measuring the response to ulnar nerve stimulation at the adductor pollicis muscle using mechanomyography or electromyography.[4] A meta-analysis reported that the incidence of residual neuromuscular paralysis was 41% in patients receiving intermediate neuromuscular blocking agents during anaesthesia.[1] It is possible that > 100,000 patients annually in the USA alone, are at risk of adverse events associated with undetected residual neuromuscular blockade.[5] Neuromuscular function monitoring and the use of the appropriate dosage of sugammadex to reverse blockade produced by rocuronium can reduce the incidence of postoperative residual curarization.[6] In this study, with usual care group receiving reversal with neostigmine resulted in a residual blockade rate of 43%.[citation needed]
Postoperative residual curarization | |
---|---|
Electromyographic monitoring at the adductor policies muscle. | |
Specialty | Anesthesia |
Incidence
editMultiple studies have demonstrated that incomplete reversal of NMBDs is an important risk factor for postoperative morbidity and mortality. Multiple studies have shown that postoperative residual curarization in the post-anesthesia care unit (PACU) is a common complication, with 40% of patients exhibiting signs of residual paralysis. The incidence of this complication continues to be high and does not seem to be decreasing over time.[7]
Types of neuromuscular blocking agents
editClassified into two main groups:
•Depolarizing NMBDs: produces skeletal muscle relaxation by binding directly with nAChRs to cause prolonged depolarization.
•Non-depolarizing NMBDs: competitive antagonists (competing with acetylcholine [ACh] for the binding sites at the nAChRs), preventing the initiation of action potential.[8]
Non-depolarizing neuromuscular blocking agents
editNon-depolarizing NMBAs are classified based on their duration of action (short, intermediate, or long-acting agents. The two most commonly used non-depolarizing NMBDs in the operating room are rocuronium and vecuronium. Both are intermediate-acting, steroidal NMBAs. Vecuronium and rocuronium can be reversed by anticholinesterases (neostigmine) or sugammadex. If sufficient spontaneous recovery has not been achieved, neostigmine (or sugammadex) should be administered.[9]
Depolarizing neuromuscular blocking agents
editSuccinylcholine is the only depolarizing NMBA available for clinical use. It produces a neuromuscular blockade that is the fastest in onset and has the shortest duration of all NMBDs. Due to these properties, succinylcholine is often used for rapid sequence induction and intubation. When a continuous infusion, repeated doses, or a large dose of succinylcholine (>4 mg/kg) is used, the risk of a Phase II block and prolonged paralysis is increased. This type of block occurs when the desensitizing phase sets in and the muscle is no longer responsive to acetylcholine and full neuromuscular blockade is achieved. TOF fade is indicative of phase II block that is likely to occur in patients who received succinylcholine and may resemble features of a nondepolarizing block. During phase II, reversal with neostigmine should not be attempted. Anticholinesterase agents can worsen paralysis in this setting.[10] Prolonged paralysis after succinylcholine administration may be due to butyrylcholinesterase (pseudocholinesterase) deficiency and may require prolonged mechanical ventilation. Unlike non-depolarizing NMBDs, reversal with neostigmine should not be attempted and sugammadex will have no effect on recovery.[11]
Adverse events from inadequate neuromuscular blockade reversal
editInadequate reversal of NMBAs is an important risk factor for anesthesia related complications. Even small degrees of residual paralysis are associated with weakness of upper airway muscles which may lead to airway obstruction and increased risk of aspiration. The hypoxic ventilatory response (HRV) can also be severely depressed as well leading to hypoxemia and need for reintubation.[7] Studies have shown that incomplete neuromuscular recovery is associated with an increased risk of pulmonary complications. A prospective observational study including patients who underwent general anesthesia for noncardiac surgery reported that the "use of NMBAs was independently associated with an increase in postoperative pulmonary complications within 28 days of surgery."[12]
Monitoring neuromuscular blockade
editPeripheral nerve stimulation patterns and definitions
editTrain-of-four (TOF)
editTOF stimulation consists of four successive supramaximal stimuli delivered at 2 Hz. After administration of a nondepolarizing NMBD, responses at this frequency progressively decrease in amplitude (referred to as "fade" or a decrease in the TOF ratio from a normal ratio of 1).
Train-of-four ratio (TOFR)
editA TOF ratio (TOFR) is calculated by dividing the amplitude of the fourth response by the amplitude of the first response (requires an quantitative measure of the response to stimulation).[13]
Train-of-four count (TOFC)
editThe TOF count (TOFC) is defined as the "number of detectable evoked responses, and it correlates with the degree of neuromuscular block, as follows:
- TOFC = 1 : >95 percent of nicotinic acetylcholine receptors (nAChRs) blocked
- TOFC = 2 : 85 to 90 percent of nAChRs blocked
- TOFC = 3 : 80 to 85 percent of nAChRs blocked
- TOFC = 4 : 70 to 75 percent of nAChRs blocked[13]
Train-of-four ratio <0.9
editData suggests that a TOF ratio measured qualitatively with EMG, MMG, or AMG must reach the threshold value of >0.9 to assure recovery of neuromuscular function. TOF ratios <0.9 are associated with residual blockade and paralysis and have demonstrated an increased risk of aspiration.[14]
Subjective monitoring
editSubjective monitoring refers to the clinical evaluation of assessing the TOFC or degree of fade by using methods such as physically touching the patient and feeling movement or visibly observing a twitch in response to neurostimulation provided by a peripheral nerve stimulator. If subjective monitoring is used, its limitations should be recognized: "clinicians tend to overestimate the TOFC when using subjective evaluation, especially at moderate levels of block. Likewise, the level of fade is difficult to detect subjectively, with most clinicians unable to detect fade when TOF ratios >0.4."[15]
Objective/quantitative monitoring
editDue to the difficulty detecting fade subjectively (TOF ratios between 0.4 and 0.9) when using peripheral nerve stimulators, clinicians are unable to reliably exclude residual neuromuscular blockade. TOF ratios >0.4 can be measured accurately and displayed numerically using quantitative neuromuscular monitoring. However, TOF ratios >4 can be measured accurately by using quantitative monitoring methods such as electromyography (EMG), kinemyography (KMG), phonomyography (PMG), and acceleromyography (AMG).[14]
Reversal of NMBDs and methods to avoid residual neuromuscular blockade
edit•Using short-acting or intermediate-acting NBMDs whenever possible can decrease the risk of residual neuromuscular blockade when compared with long-acting NMBDs.
•Use objective neuromuscular monitoring (acceleromyography, electromyography, kinemyography) if possible. Peripheral nerve stimulators may be more readily available and can be used as well. However, peripheral nerve stimulators can only subjectively determine the depth of block (train-of-four count) and cannot provide accurate information needed for the timing and dosing of reversal agents as well as ensure full recovery (TOF fade).[16]
•If spontaneous recovery has not reached a TOFC = 4, use sugammadex rather than neostigmine for reversal of steroidal NMBDs.[17]
•If sugammadex is unavailable, wait for spontaneous recovery to achieve a TOFC = 4 before administering neostigmine.
•Extubate the trachea only after a TOFR ≥0.9 is achieved (if quantitative monitors are available)
•If objective monitoring is not available, administer reversal agents (neostigmine) only when TOFC = 4. Wait at least 10 minutes after neostigmine is given to ensure enough time for the neuromuscular blockade to be fully reversed before tracheal extubation.[18]
References
edit- ^ a b Naguib M, Kopman AF, Ensor JE (2007). "Neuromuscular monitoring and postoperative residual curarisation: a meta-analysis". Br J Anaesth. 98 (3): 302–316. doi:10.1093/bja/ael386. PMID 17307778.302-316&rft.date=2007&rft_id=info:doi/10.1093/bja/ael386&rft_id=info:pmid/17307778&rft.aulast=Naguib&rft.aufirst=M&rft.au=Kopman, AF&rft.au=Ensor, JE&rft_id=https://doi.org/10.1093%2Fbja%2Fael386&rfr_id=info:sid/en.wikipedia.org:Postoperative residual curarization" class="Z3988">
- ^ Baillard C (2005). "Postoperative residual neuromuscular block: a survey of management". Br J Anaesth. 95 (5): 622–626. doi:10.1093/bja/aei240. PMID 16183681.622-626&rft.date=2005&rft_id=info:doi/10.1093/bja/aei240&rft_id=info:pmid/16183681&rft.aulast=Baillard&rft.aufirst=C&rft_id=https://doi.org/10.1093%2Fbja%2Faei240&rfr_id=info:sid/en.wikipedia.org:Postoperative residual curarization" class="Z3988">
- ^ Ortega R, Brull SJ, Prielipp R, Gutierrez A, De La Cruz R, Conley CM (2018-01-25). "Monitoring Neuromuscular Function". New England Journal of Medicine. 378 (4): e6. doi:10.1056/nejmvcm1603741. ISSN 0028-4793. PMID 29365307.
- ^ Naguib M, Brull SJ, Johnson KB (2017). "Conceptual and technical insights into the basis of neuromuscular monitoring". Anaesthesia. 72 (S1): 16–37. doi:10.1111/anae.13738. ISSN 1365-2044. PMID 28044330.16-37&rft.date=2017&rft.issn=1365-2044&rft_id=info:pmid/28044330&rft_id=info:doi/10.1111/anae.13738&rft.aulast=Naguib&rft.aufirst=M&rft.au=Brull, SJ&rft.au=Johnson, KB&rft_id=https://doi.org/10.1111%2Fanae.13738&rfr_id=info:sid/en.wikipedia.org:Postoperative residual curarization" class="Z3988">
- ^ Brull SJ, Naguib M, Miller RD (2008). "Residual Neuromuscular Block: Rediscovering the Obvious". Anesthesia & Analgesia. 107 (1): 11–14. doi:10.1213/ane.0b013e3181753266. ISSN 0003-2999. PMID 18635461.11-14&rft.date=2008&rft.issn=0003-2999&rft_id=info:pmid/18635461&rft_id=info:doi/10.1213/ane.0b013e3181753266&rft.aulast=Brull&rft.aufirst=SJ&rft.au=Naguib, M&rft.au=Miller, RD&rft_id=https://doi.org/10.1213%2Fane.0b013e3181753266&rfr_id=info:sid/en.wikipedia.org:Postoperative residual curarization" class="Z3988">
- ^ Brueckmann B, Sasaki N, Grobara P, Li MK, Woo T, de Bie J, Maktabi M, Lee J, Kwo J (November 2015). "Effects of sugammadex on incidence of postoperative residual neuromuscular blockade: a randomized, controlled study". British Journal of Anaesthesia. 115 (5): 743–751. doi:10.1093/bja/aev104. ISSN 0007-0912. PMID 25935840.743-751&rft.date=2015-11&rft.issn=0007-0912&rft_id=info:pmid/25935840&rft_id=info:doi/10.1093/bja/aev104&rft.aulast=Brueckmann&rft.aufirst=B&rft.au=Sasaki, N&rft.au=Grobara, P&rft.au=Li, MK&rft.au=Woo, T&rft.au=de Bie, J&rft.au=Maktabi, M&rft.au=Lee, J&rft.au=Kwo, J&rft_id=https://doi.org/10.1093%2Fbja%2Faev104&rfr_id=info:sid/en.wikipedia.org:Postoperative residual curarization" class="Z3988">
- ^ a b Murphy GS, Brull SJ (July 2010). "Residual Neuromuscular Block: Lessons Unlearned. Part I". Anesthesia & Analgesia. 111 (1): 120–128. doi:10.1213/ANE.0b013e3181da832d. PMID 20442260. S2CID 207132635.120-128&rft.date=2010-07&rft_id=https://api.semanticscholar.org/CorpusID:207132635#id-name=S2CID&rft_id=info:pmid/20442260&rft_id=info:doi/10.1213/ANE.0b013e3181da832d&rft.aulast=Murphy&rft.aufirst=GS&rft.au=Brull, SJ&rft_id=https://doi.org/10.1213%2FANE.0b013e3181da832d&rfr_id=info:sid/en.wikipedia.org:Postoperative residual curarization" class="Z3988">
- ^ Naguib M, Flood P, McArdle JJ, Brenner HR (January 2002). "Advances in Neurobiology of the Neuromuscular Junction: Implications for the Anesthesiologist". Anesthesiology. 96 (1): 202–231. doi:10.1097/00000542-200201000-00035. PMID 11753022. S2CID 28588587.202-231&rft.date=2002-01&rft_id=https://api.semanticscholar.org/CorpusID:28588587#id-name=S2CID&rft_id=info:pmid/11753022&rft_id=info:doi/10.1097/00000542-200201000-00035&rft.aulast=Naguib&rft.aufirst=M&rft.au=Flood, P&rft.au=McArdle, JJ&rft.au=Brenner, HR&rft_id=https://doi.org/10.1097%2F00000542-200201000-00035&rfr_id=info:sid/en.wikipedia.org:Postoperative residual curarization" class="Z3988">
- ^ Tran DT, Newton EK, Mount VA, Lee JS, Wells GA, Perry JJ (29 October 2015). "Rocuronium versus succinylcholine for rapid sequence induction intubation". Cochrane Database of Systematic Reviews. 2015 (10): CD002788. doi:10.1002/14651858.CD002788.pub3. PMC 7104695. PMID 26512948.
- ^ Naguib M, Lien CA, Aker J, Eliazo R (June 2004). "Posttetanic Potentiation and Fade in the Response to Tetanic and Train-of-Four Stimulation During Succinylcholine-Induced Block". Anesthesia & Analgesia. 98 (6): 1686–1691. doi:10.1213/01.ane.0000113544.21754.a5. PMID 15155329. S2CID 20439614.1686-1691&rft.date=2004-06&rft_id=https://api.semanticscholar.org/CorpusID:20439614#id-name=S2CID&rft_id=info:pmid/15155329&rft_id=info:doi/10.1213/01.ane.0000113544.21754.a5&rft.aulast=Naguib&rft.aufirst=M&rft.au=Lien, CA&rft.au=Aker, J&rft.au=Eliazo, R&rft_id=https://doi.org/10.1213%2F01.ane.0000113544.21754.a5&rfr_id=info:sid/en.wikipedia.org:Postoperative residual curarization" class="Z3988">
- ^ Davis L, Britten JJ, Morgan M (March 1997). "Cholinesterase Its significance in anaesthetic practice". Anaesthesia. 52 (3): 244–260. doi:10.1111/j.1365-2044.1997.084-az0080.x. PMID 9124666. S2CID 25107062.244-260&rft.date=1997-03&rft_id=https://api.semanticscholar.org/CorpusID:25107062#id-name=S2CID&rft_id=info:pmid/9124666&rft_id=info:doi/10.1111/j.1365-2044.1997.084-az0080.x&rft.aulast=Davis&rft.aufirst=L&rft.au=Britten, JJ&rft.au=Morgan, M&rfr_id=info:sid/en.wikipedia.org:Postoperative residual curarization" class="Z3988">
- ^ Kirmeier E, Eriksson LI, Lewald H, Jonsson Fagerlund M, Hoeft A, Hollmann M, Meistelman C, Hunter JM, Ulm K, Blobner M (February 2019). "Post-anaesthesia pulmonary complications after use of muscle relaxants (POPULAR): a multicentre, prospective observational study". Lancet Respir Med. 7 (2): 129–140. doi:10.1016/S2213-2600(18)30294-7. hdl:11392/2398404. PMID 30224322. S2CID 52285710.129-140&rft.date=2019-02&rft_id=info:hdl/11392/2398404&rft_id=https://api.semanticscholar.org/CorpusID:52285710#id-name=S2CID&rft_id=info:pmid/30224322&rft_id=info:doi/10.1016/S2213-2600(18)30294-7&rft.aulast=Kirmeier&rft.aufirst=E&rft.au=Eriksson, LI&rft.au=Lewald, H&rft.au=Jonsson Fagerlund, M&rft.au=Hoeft, A&rft.au=Hollmann, M&rft.au=Meistelman, C&rft.au=Hunter, JM&rft.au=Ulm, K&rft.au=Blobner, M&rfr_id=info:sid/en.wikipedia.org:Postoperative residual curarization" class="Z3988"> (Erratum: doi:10.1016/S2213-2600(18)30467-3, PMID 30224322)
- ^ a b Lee C (September 1975). "Train-of-4 Quantitation of Competitive Neuromuscular Block". Anesthesia & Analgesia. 54 (5): 649–653. doi:10.1213/00000539-197509500-00021. PMID 1237253. S2CID 24218901.649-653&rft.date=1975-09&rft_id=https://api.semanticscholar.org/CorpusID:24218901#id-name=S2CID&rft_id=info:pmid/1237253&rft_id=info:doi/10.1213/00000539-197509500-00021&rft.aulast=Lee&rft.aufirst=C&rft_id=https://doi.org/10.1213%2F00000539-197509500-00021&rfr_id=info:sid/en.wikipedia.org:Postoperative residual curarization" class="Z3988">
- ^ a b Brull, Sorin J.; Murphy, Glenn S. (July 2010). "Residual Neuromuscular Block: Lessons Unlearned. Part II". Anesthesia & Analgesia. 111 (1): 129–140. doi:10.1213/ANE.0b013e3181da8312. PMID 20442261. S2CID 23738174.129-140&rft.date=2010-07&rft_id=https://api.semanticscholar.org/CorpusID:23738174#id-name=S2CID&rft_id=info:pmid/20442261&rft_id=info:doi/10.1213/ANE.0b013e3181da8312&rft.aulast=Brull&rft.aufirst=Sorin J.&rft.au=Murphy, Glenn S.&rft_id=https://doi.org/10.1213%2FANE.0b013e3181da8312&rfr_id=info:sid/en.wikipedia.org:Postoperative residual curarization" class="Z3988">
- ^ Cammu G, De Witte J, De Veylder J, Byttebier G, Vandeput D, Foubert L, Vandenbroucke G, Deloof T (February 2006). "Postoperative Residual Paralysis in Outpatients Versus Inpatients". Anesthesia & Analgesia. 102 (2): 426–429. doi:10.1213/01.ane.0000195543.61123.1f. PMID 16428537. S2CID 9670756.426-429&rft.date=2006-02&rft_id=https://api.semanticscholar.org/CorpusID:9670756#id-name=S2CID&rft_id=info:pmid/16428537&rft_id=info:doi/10.1213/01.ane.0000195543.61123.1f&rft.aulast=Cammu&rft.aufirst=G&rft.au=De Witte, J&rft.au=De Veylder, J&rft.au=Byttebier, G&rft.au=Vandeput, D&rft.au=Foubert, L&rft.au=Vandenbroucke, G&rft.au=Deloof, T&rft_id=https://doi.org/10.1213%2F01.ane.0000195543.61123.1f&rfr_id=info:sid/en.wikipedia.org:Postoperative residual curarization" class="Z3988">
- ^ Bhananker SM, Treggiari MM, Sellers BA, Cain KC, Ramaiah R, Thilen SR (October 2015). "Comparison of train-of-four count by anesthesia providers versus TOF-Watch® SX: a prospective cohort study". Canadian Journal of Anesthesia. 62 (10): 1089–1096. doi:10.1007/s12630-015-0433-9. PMID 26224034. S2CID 39769290.1089-1096&rft.date=2015-10&rft_id=https://api.semanticscholar.org/CorpusID:39769290#id-name=S2CID&rft_id=info:pmid/26224034&rft_id=info:doi/10.1007/s12630-015-0433-9&rft.aulast=Bhananker&rft.aufirst=SM&rft.au=Treggiari, MM&rft.au=Sellers, BA&rft.au=Cain, KC&rft.au=Ramaiah, R&rft.au=Thilen, SR&rft_id=https://doi.org/10.1007%2Fs12630-015-0433-9&rfr_id=info:sid/en.wikipedia.org:Postoperative residual curarization" class="Z3988">
- ^ Kirkegaard H, Heier T, Caldwell JE (January 2002). "Efficacy of Tactile-guided Reversal from Cisatracurium-induced Neuromuscular Block". Anesthesiology. 96 (1): 45–50. doi:10.1097/00000542-200201000-00013. PMID 11753000. S2CID 36988752.45-50&rft.date=2002-01&rft_id=https://api.semanticscholar.org/CorpusID:36988752#id-name=S2CID&rft_id=info:pmid/11753000&rft_id=info:doi/10.1097/00000542-200201000-00013&rft.aulast=Kirkegaard&rft.aufirst=H&rft.au=Heier, T&rft.au=Caldwell, JE&rft_id=https://doi.org/10.1097%2F00000542-200201000-00013&rfr_id=info:sid/en.wikipedia.org:Postoperative residual curarization" class="Z3988">
- ^ Kopman AF, Zank LM, Ng J, Neuman GG (January 2004). "Antagonism of Cisatracurium and Rocuronium Block at a Tactile Train-of-Four Count of 2: Should Quantitative Assessment of Neuromuscular Function Be Mandatory?". Anesthesia & Analgesia. 98 (1): 102–106. doi:10.1213/01.ane.0000094985.19305.e9. PMID 14693596. S2CID 24936824.102-106&rft.date=2004-01&rft_id=https://api.semanticscholar.org/CorpusID:24936824#id-name=S2CID&rft_id=info:pmid/14693596&rft_id=info:doi/10.1213/01.ane.0000094985.19305.e9&rft.aulast=Kopman&rft.aufirst=AF&rft.au=Zank, LM&rft.au=Ng, J&rft.au=Neuman, GG&rfr_id=info:sid/en.wikipedia.org:Postoperative residual curarization" class="Z3988">