Phragmen–Brouwer theorem

In topology, the Phragmén–Brouwer theorem, introduced by Lars Edvard Phragmén and Luitzen Egbertus Jan Brouwer, states that if X is a normal connected locally connected topological space, then the following two properties are equivalent:

  • If A and B are disjoint closed subsets whose union separates X, then either A or B separates X.
  • X is unicoherent, meaning that if X is the union of two closed connected subsets, then their intersection is connected or empty.

The theorem remains true with the weaker condition that A and B be separated.

References

edit
  • R.F. Dickman jr (1984), "A Strong Form of the Phragmen–Brouwer Theorem", Proceedings of the American Mathematical Society, 90 (2): 333–337, doi:10.2307/2045367, JSTOR 2045367333-337&rft.date=1984&rft_id=info:doi/10.2307/2045367&rft_id=https://www.jstor.org/stable/2045367#id-name=JSTOR&rft.au=R.F. Dickman jr&rfr_id=info:sid/en.wikipedia.org:Phragmen–Brouwer theorem" class="Z3988">
  • Hunt, J.H.V. (1974), "The Phragmen–Brouwer theorem for separated sets", Bol. Soc. Mat. Mex., Series II, 19: 26–35, Zbl 0337.5402126-35&rft.date=1974&rft_id=https://zbmath.org/?format=complete&q=an:0337.54021#id-name=Zbl&rft.aulast=Hunt&rft.aufirst=J.H.V.&rfr_id=info:sid/en.wikipedia.org:Phragmen–Brouwer theorem" class="Z3988">
  • Wilson, W. A. (1930), "On the Phragmén–Brouwer theorem", Bulletin of the American Mathematical Society, 36 (2): 111–114, doi:10.1090/S0002-9904-1930-04901-0, ISSN 0002-9904, MR 1561900111-114&rft.date=1930&rft_id=https://mathscinet.ams.org/mathscinet-getitem?mr=1561900#id-name=MR&rft.issn=0002-9904&rft_id=info:doi/10.1090/S0002-9904-1930-04901-0&rft.aulast=Wilson&rft.aufirst=W. A.&rfr_id=info:sid/en.wikipedia.org:Phragmen–Brouwer theorem" class="Z3988">
  • García-Maynez, A. and Illanes, A. ‘A survey of multicoherence’, An. Inst. Autonoma Mexico 29 (1989) 17–67.
  • Brown, R.; Antolín-Camarena, O. (2014). "Corrigendum to "Groupoids, the Phragmen–Brouwer Property, and the Jordan Curve Theorem", J. Homotopy and Related Structures 1 (2006) 175–183". arXiv:1404.0556 [math.AT].
  • Wilder, R. L. Topology of manifolds, AMS Colloquium Publications, Volume 32. American Mathematical Society, New York (1949).