Photoautotroph

(Redirected from Photoautotrophism)

Photoautotrophs are organisms that can utilize light energy from sunlight and elements (such as carbon) from inorganic compounds to produce organic materials needed to sustain their own metabolism (i.e. autotrophy). Such biological activities are known as photosynthesis, and examples of such organisms include plants, algae and cyanobacteria.

Winogradsky column showing Photoautotrophs in purple and green

Eukaryotic photoautotrophs absorb photonic energy through the photopigment chlorophyll (a porphyrin derivative) in their endosymbiont chloroplasts, while prokaryotic photoautotrophs use chlorophylls and bacteriochlorophylls present in free-floating cytoplasmic thylakoids or, in rare cases, membrane-bound retinal derivatives such as bacteriorhodopsin. The vast majority of known photoautotrophs perform photosynthesis that produce oxygen as a byproduct, while a small minority (such as haloarchaea and sulfur-reducing bacteria) perform anoxygenic photosynthesis.

Origin and the Great Oxidation Event

edit

Chemical and geological evidence indicate that photosynthetic cyanobacteria existed about 2.6 billion years ago and anoxygenic photosynthesis had been taking place since a billion years before that.[1] Oxygenic photosynthesis was the primary source of free oxygen and led to the Great Oxidation Event roughly 2.4 to 2.1 billion years ago during the Neoarchean-Paleoproterozoic boundary.[2] Although the end of the Great Oxidation Event was marked by a significant decrease in gross primary productivity that eclipsed extinction events,[3] the development of aerobic respiration enabled more energetic metabolism of organic molecules, leading to symbiogenesis and the evolution of eukaryotes, and allowing the diversification of complex life on Earth.

Prokaryotic photoautotrophs

edit

Prokaryotic photoautotrophs include Cyanobacteria, Pseudomonadota, Chloroflexota, Acidobacteriota, Chlorobiota, Bacillota, Gemmatimonadota, and Eremiobacterota.[4]

Cyanobacteria is the only prokaryotic group that performs oxygenic photosynthesis. Anoxygenic photosynthetic bacteria use PSI- and PSII-like photosystems, which are pigment protein complexes for capturing light.[5] Both of these photosystems use bacteriochlorophyll. There are multiple hypotheses for how oxygenic photosynthesis evolved. The loss hypothesis states that PSI and PSII were present in anoxygenic ancestor cyanobacteria from which the different branches of anoxygenic bacteria evolved.[5] The fusion hypothesis states that the photosystems merged later through horizontal gene transfer.[5] The most recent hypothesis suggests that PSI and PSII diverged from an unknown common ancestor with a protein complex that was coded by one gene. These photosystems then specialized into the ones that are found today.[4]

Eukaryotic photoautotrophs

edit

Eukaryotic photoautotrophs include red algae, haptophytes, stramenopiles, cryptophytes, chlorophytes, and land plants.[6] These organisms perform photosynthesis through organelles called chloroplasts and are believed to have originated about 2 billion years ago.[1] Comparing the genes of chloroplast and cyanobacteria strongly suggests that chloroplasts evolved as a result of endosymbiosis with cyanobacteria that gradually lost the genes required to be free-living. However, it is difficult to determine whether all chloroplasts originated from a single, primary endosymbiotic event, or multiple independent events.[1] Some brachiopods (Gigantoproductus) and bivalves (Tridacna) also evolved photoautotrophy.[7]

References

edit
  1. ^ a b c Olson, John M.; Blankenship, Robert E. (2004). "Thinking About the Evolution of Photosynthesis". Photosynthesis Research. 80 (1–3): 373–386. Bibcode:2004PhoRe..80..373O. doi:10.1023/B:PRES.0000030457.06495.83. ISSN 0166-8595. PMID 16328834. S2CID 1720483.1–3&rft.pages=373-386&rft.date=2004&rft_id=https://api.semanticscholar.org/CorpusID:1720483#id-name=S2CID&rft_id=info:bibcode/2004PhoRe..80..373O&rft.issn=0166-8595&rft_id=info:doi/10.1023/B:PRES.0000030457.06495.83&rft_id=info:pmid/16328834&rft.aulast=Olson&rft.aufirst=John M.&rft.au=Blankenship, Robert E.&rft_id=http://link.springer.com/10.1023/B:PRES.0000030457.06495.83&rfr_id=info:sid/en.wikipedia.org:Photoautotroph" class="Z3988">
  2. ^ Hodgskiss, Malcolm S. W.; Crockford, Peter W.; Peng, Yongbo; Wing, Boswell A.; Horner, Tristan J. (27 August 2019). "A productivity collapse to end Earth's Great Oxidation". Proceedings of the National Academy of Sciences. 116 (35): 17207–17212. Bibcode:2019PNAS..11617207H. doi:10.1073/pnas.1900325116. ISSN 0027-8424. PMC 6717284. PMID 31405980.17207-17212&rft.date=2019-08-27&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6717284#id-name=PMC&rft_id=info:bibcode/2019PNAS..11617207H&rft_id=info:pmid/31405980&rft_id=info:doi/10.1073/pnas.1900325116&rft.issn=0027-8424&rft.aulast=Hodgskiss&rft.aufirst=Malcolm S. W.&rft.au=Crockford, Peter W.&rft.au=Peng, Yongbo&rft.au=Wing, Boswell A.&rft.au=Horner, Tristan J.&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6717284&rfr_id=info:sid/en.wikipedia.org:Photoautotroph" class="Z3988">
  3. ^ Lyons, Timothy W.; Reinhard, Christopher T.; Planavsky, Noah J. (February 2014). "The rise of oxygen in Earth's early ocean and atmosphere". Nature. 506 (7488): 307–315. Bibcode:2014Natur.506..307L. doi:10.1038/nature13068. ISSN 0028-0836. PMID 24553238. S2CID 4443958.307-315&rft.date=2014-02&rft_id=https://api.semanticscholar.org/CorpusID:4443958#id-name=S2CID&rft_id=info:bibcode/2014Natur.506..307L&rft.issn=0028-0836&rft_id=info:doi/10.1038/nature13068&rft_id=info:pmid/24553238&rft.aulast=Lyons&rft.aufirst=Timothy W.&rft.au=Reinhard, Christopher T.&rft.au=Planavsky, Noah J.&rft_id=http://www.nature.com/articles/nature13068&rfr_id=info:sid/en.wikipedia.org:Photoautotroph" class="Z3988">
  4. ^ a b Sánchez-Baracaldo, Patricia; Cardona, Tanai (February 2020). "On the origin of oxygenic photosynthesis and Cyanobacteria". New Phytologist. 225 (4): 1440–1446. doi:10.1111/nph.16249. hdl:10044/1/74260. ISSN 0028-646X. PMID 31598981.1440-1446&rft.date=2020-02&rft_id=info:hdl/10044/1/74260&rft.issn=0028-646X&rft_id=info:pmid/31598981&rft_id=info:doi/10.1111/nph.16249&rft.aulast=Sánchez-Baracaldo&rft.aufirst=Patricia&rft.au=Cardona, Tanai&rft_id=https://doi.org/10.1111%2Fnph.16249&rfr_id=info:sid/en.wikipedia.org:Photoautotroph" class="Z3988">
  5. ^ a b c Björn, Lars (June 2009). "The evolution of photosynthesis and chloroplasts". Current Science. 96 (11): 1466–1474.1466-1474&rft.date=2009-06&rft.aulast=Björn&rft.aufirst=Lars&rft_id=https://www.researchgate.net/publication/299247771&rfr_id=info:sid/en.wikipedia.org:Photoautotroph" class="Z3988">
  6. ^ Yoon, Hwan Su; Hackett, Jeremiah D.; Ciniglia, Claudia; Pinto, Gabriele; Bhattacharya, Debashish (May 2004). "A Molecular Timeline for the Origin of Photosynthetic Eukaryotes". Molecular Biology and Evolution. 21 (5): 809–818. doi:10.1093/molbev/msh075. ISSN 1537-1719. PMID 14963099.809-818&rft.date=2004-05&rft.issn=1537-1719&rft_id=info:pmid/14963099&rft_id=info:doi/10.1093/molbev/msh075&rft.aulast=Yoon&rft.aufirst=Hwan Su&rft.au=Hackett, Jeremiah D.&rft.au=Ciniglia, Claudia&rft.au=Pinto, Gabriele&rft.au=Bhattacharya, Debashish&rft_id=https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msh075&rfr_id=info:sid/en.wikipedia.org:Photoautotroph" class="Z3988">
  7. ^ George R. McGhee, Jr. (2019). Convergent Evolution on Earth. Lessons for the Search for Extraterrestrial Life. MIT Press. p. 47. ISBN 9780262354189. Retrieved 23 August 2022.