The partition algebra is an associative algebra with a basis of set-partition diagrams and multiplication given by diagram concatenation.[1] Its subalgebras include diagram algebras such as the Brauer algebra, the Temperley–Lieb algebra, or the group algebra of the symmetric group. Representations of the partition algebra are built from sets of diagrams and from representations of the symmetric group.

Definition

edit

Diagrams

edit

A partition of   elements labelled   is represented as a diagram, with lines connecting elements in the same subset. In the following example, the subset   gives rise to the lines  , and could equivalently be represented by the lines   (for instance).

 

For   and  , the partition algebra   is defined by a  -basis made of partitions, and a multiplication given by diagram concatenation. The concatenated diagram comes with a factor  , where   is the number of connected components that are disconnected from the top and bottom elements.

 

Generators and relations

edit

The partition algebra   is generated by   elements of the type

 

These generators obey relations that include[2]

 

Other elements that are useful for generating subalgebras include

 

In terms of the original generators, these elements are

 

Properties

edit

The partition algebra   is an associative algebra. It has a multiplicative identity

 

The partition algebra   is semisimple for  . For any two   in this set, the algebras   and   are isomorphic.[1]

The partition algebra is finite-dimensional, with   (a Bell number).

Subalgebras

edit

Eight subalgebras

edit

Subalgebras of the partition algebra can be defined by the following properties:[3]

  • Whether they are planar i.e. whether lines may cross in diagrams.
  • Whether subsets are allowed to have any size  , or size  , or only size  .
  • Whether we allow top-top and bottom-bottom lines, or only top-bottom lines. In the latter case, the parameter   is absent, or can be eliminated by  .

Combining these properties gives rise to 8 nontrivial subalgebras, in addition to the partition algebra itself:[1][3]

Notation Name Generators Dimension Example
  Partition      
  Planar partition      
  Rook Brauer      
  Motzkin      
  Brauer      
  Temperley–Lieb      
  Rook      
  Planar rook      
  Symmetric group      

The symmetric group algebra   is the group ring of the symmetric group   over  . The Motzkin algebra is sometimes called the dilute Temperley–Lieb algebra in the physics literature.[4]

Properties

edit

The listed subalgebras are semisimple for  .

Inclusions of planar into non-planar algebras:

 

Inclusions from constraints on subset size:

 

Inclusions from allowing top-top and bottom-bottom lines:

 

We have the isomorphism:

 

More subalgebras

edit

In addition to the eight subalgebras described above, other subalgebras have been defined:

  • The totally propagating partition subalgebra   is generated by diagrams whose blocks all propagate, i.e. partitions whose subsets all contain top and bottom elements.[5] These diagrams from the dual symmetric inverse monoid, which is generated by  .[6]
  • The quasi-partition algebra   is generated by subsets of size at least two. Its generators are   and its dimension is  .[7]
  • The uniform block permutation algebra   is generated by subsets with as many top elements as bottom elements. It is generated by  .[8]

An algebra with a half-integer index   is defined from partitions of   elements by requiring that   and   are in the same subset. For example,   is generated by   so that  , and  .[2]

Periodic subalgebras are generated by diagrams that can be drawn on an annulus without line crossings. Such subalgebras include a translation element    such that  . The translation element and its powers are the only combinations of   that belong to periodic subalgebras.

Representations

edit

Structure

edit

For an integer  , let   be the set of partitions of   elements   (bottom) and   (top), such that no two top elements are in the same subset, and no top element is alone. Such partitions are represented by diagrams with no top-top lines, with at least one line for each top element. For example, in the case  :

 

Partition diagrams act on   from the bottom, while the symmetric group   acts from the top. For any Specht module   of   (with therefore  ), we define the representation of  

 

The dimension of this representation is[1]

 

where   is a Stirling number of the second kind,   is a binomial coefficient, and   is given by the hook length formula.

A basis of   can be described combinatorially in terms of set-partition tableaux: Young tableaux whose boxes are filled with the blocks of a set partition.[1]

Assuming that   is semisimple, the representation   is irreducible, and the set of irreducible finite-dimensional representations of the partition algebra is

 

Representations of subalgebras

edit

Representations of non-planar subalgebras have similar structures as representations of the partition algebra. For example, the Brauer-Specht modules of the Brauer algebra are built from Specht modules, and certain sets of partitions.

In the case of the planar subalgebras, planarity prevents nontrivial permutations, and Specht modules do not appear. For example, a standard module of the Temperley–Lieb algebra is parametrized by an integer   with  , and a basis is simply given by a set of partitions.

The following table lists the irreducible representations of the partition algebra and eight subalgebras.[3]

Algebra Parameter Conditions Dimension
       
       
       
       
       
       
       
       
       

The irreducible representations of   are indexed by partitions such that   and their dimensions are  .[5] The irreducible representations of   are indexed by partitions such that  .[7] The irreducible representations of   are indexed by sequences of partitions.[8]

Schur-Weyl duality

edit

Assume  . For   a  -dimensional vector space with basis  , there is a natural action of the partition algebra   on the vector space  . This action is defined by the matrix elements of a partition   in the basis  :[2]

 

This matrix element is one if all indices corresponding to any given partition subset coincide, and zero otherwise. For example, the action of a Temperley–Lieb generator is

 

Duality between the partition algebra and the symmetric group

edit

Let   be integer. Let us take   to be the natural permutation representation of the symmetric group  . This  -dimensional representation is a sum of two irreducible representations: the standard and trivial representations,  .

Then the partition algebra   is the centralizer of the action of   on the tensor product space  ,

 

Moreover, as a bimodule over  , the tensor product space decomposes into irreducible representations as[1]

 

where   is a Young diagram of size   built by adding a first row to  , and   is the corresponding Specht module of  .

Dualities involving subalgebras

edit

The duality between the symmetric group and the partition algebra generalizes the original Schur-Weyl duality between the general linear group and the symmetric group. There are other generalizations. In the relevant tensor product spaces, we write   for an irreducible  -dimensional representation of the first group or algebra:

Tensor product space Group or algebra Dual algebra or group Comments
      The duality for the full partition algebra
      Case of a partition algebra with a half-integer index[2]
      The original Schur-Weyl duality
      Duality between the orthogonal group and the Brauer algebra
      Duality between the orthogonal group and the rook Brauer algebra[9]
      Duality between the rook algebra and the totally propagating partition algebra[10][5]
      Duality between a Lie superalgebra and the planar rook algebra[11]
      Duality between the symmetric group and the quasi-partition algebra[7]
      Duality involving the walled Brauer algebra.[12]

References

edit
  1. ^ a b c d e f Halverson, Tom; Jacobson, Theodore N. (2020). "Set-partition tableaux and representations of diagram algebras". Algebraic Combinatorics. 3 (2): 509–538. arXiv:1808.08118v2. doi:10.5802/alco.102. ISSN 2589-5486. S2CID 119167251.509-538&rft.date=2020&rft_id=info:arxiv/1808.08118v2&rft_id=https://api.semanticscholar.org/CorpusID:119167251#id-name=S2CID&rft.issn=2589-5486&rft_id=info:doi/10.5802/alco.102&rft.aulast=Halverson&rft.aufirst=Tom&rft.au=Jacobson, Theodore N.&rft_id=https://alco.centre-mersenne.org/item/ALCO_2020__3_2_509_0&rfr_id=info:sid/en.wikipedia.org:Partition algebra" class="Z3988">
  2. ^ a b c d Halverson, Tom; Ram, Arun (2005). "Partition algebras". European Journal of Combinatorics. 26 (6): 869–921. arXiv:math/0401314v2. doi:10.1016/j.ejc.2004.06.005. S2CID 1168919.869-921&rft.date=2005&rft_id=info:arxiv/math/0401314v2&rft_id=https://api.semanticscholar.org/CorpusID:1168919#id-name=S2CID&rft_id=info:doi/10.1016/j.ejc.2004.06.005&rft.aulast=Halverson&rft.aufirst=Tom&rft.au=Ram, Arun&rft_id=https://linkinghub.elsevier.com/retrieve/pii/S0195669804000976&rfr_id=info:sid/en.wikipedia.org:Partition algebra" class="Z3988">
  3. ^ a b c Colmenarejo, Laura; Orellana, Rosa; Saliola, Franco; Schilling, Anne; Zabrocki, Mike (2020). "An insertion algorithm on multiset partitions with applications to diagram algebras". Journal of Algebra. 557: 97–128. arXiv:1905.02071v2. doi:10.1016/j.jalgebra.2020.04.010. S2CID 146121089.97-128&rft.date=2020&rft_id=info:arxiv/1905.02071v2&rft_id=https://api.semanticscholar.org/CorpusID:146121089#id-name=S2CID&rft_id=info:doi/10.1016/j.jalgebra.2020.04.010&rft.aulast=Colmenarejo&rft.aufirst=Laura&rft.au=Orellana, Rosa&rft.au=Saliola, Franco&rft.au=Schilling, Anne&rft.au=Zabrocki, Mike&rft_id=https://linkinghub.elsevier.com/retrieve/pii/S0021869320301873&rfr_id=info:sid/en.wikipedia.org:Partition algebra" class="Z3988">
  4. ^ Jacobsen, Jesper Lykke; Ribault, Sylvain; Saleur, Hubert (2022). "Spaces of states of the two-dimensional O(n) and Potts models". arXiv:2208.14298. {{cite journal}}: Cite journal requires |journal= (help)
  5. ^ a b c Mishra, Ashish; Srivastava, Shraddha (2021). "Jucys–Murphy elements of partition algebras for the rook monoid". International Journal of Algebra and Computation. 31 (5): 831–864. arXiv:1912.10737v3. doi:10.1142/S0218196721500399. ISSN 0218-1967. S2CID 209444954.831-864&rft.date=2021&rft_id=info:arxiv/1912.10737v3&rft_id=https://api.semanticscholar.org/CorpusID:209444954#id-name=S2CID&rft.issn=0218-1967&rft_id=info:doi/10.1142/S0218196721500399&rft.aulast=Mishra&rft.aufirst=Ashish&rft.au=Srivastava, Shraddha&rft_id=https://www.worldscientific.com/doi/abs/10.1142/S0218196721500399&rfr_id=info:sid/en.wikipedia.org:Partition algebra" class="Z3988">
  6. ^ Maltcev, Victor (2007-03-16). "On a new approach to the dual symmetric inverse monoid I*X". arXiv:math/0703478v1.
  7. ^ a b c Daugherty, Zajj; Orellana, Rosa (2014). "The quasi-partition algebra". Journal of Algebra. 404: 124–151. arXiv:1212.2596v1. doi:10.1016/j.jalgebra.2013.11.028. S2CID 117848394.124-151&rft.date=2014&rft_id=info:arxiv/1212.2596v1&rft_id=https://api.semanticscholar.org/CorpusID:117848394#id-name=S2CID&rft_id=info:doi/10.1016/j.jalgebra.2013.11.028&rft.aulast=Daugherty&rft.aufirst=Zajj&rft.au=Orellana, Rosa&rft_id=https://linkinghub.elsevier.com/retrieve/pii/S0021869314000477&rfr_id=info:sid/en.wikipedia.org:Partition algebra" class="Z3988">
  8. ^ a b Orellana, Rosa; Saliola, Franco; Schilling, Anne; Zabrocki, Mike (2021-12-27). "Plethysm and the algebra of uniform block permutations". arXiv:2112.13909v1 [math.CO].
  9. ^ Halverson, Tom; delMas, Elise (2014-01-02). "Representations of the Rook-Brauer Algebra". Communications in Algebra. 42 (1): 423–443. arXiv:1206.4576v2. doi:10.1080/00927872.2012.716120. ISSN 0092-7872. S2CID 38469372.423-443&rft.date=2014-01-02&rft_id=info:arxiv/1206.4576v2&rft_id=https://api.semanticscholar.org/CorpusID:38469372#id-name=S2CID&rft.issn=0092-7872&rft_id=info:doi/10.1080/00927872.2012.716120&rft.aulast=Halverson&rft.aufirst=Tom&rft.au=delMas, Elise&rft_id=http://www.tandfonline.com/doi/abs/10.1080/00927872.2012.716120&rfr_id=info:sid/en.wikipedia.org:Partition algebra" class="Z3988">
  10. ^ Kudryavtseva, Ganna; Mazorchuk, Volodymyr (2008). "Schur–Weyl dualities for symmetric inverse semigroups". Journal of Pure and Applied Algebra. 212 (8): 1987–1995. arXiv:math/0702864. doi:10.1016/j.jpaa.2007.12.004. S2CID 13564450.1987-1995&rft.date=2008&rft_id=info:arxiv/math/0702864&rft_id=https://api.semanticscholar.org/CorpusID:13564450#id-name=S2CID&rft_id=info:doi/10.1016/j.jpaa.2007.12.004&rft.aulast=Kudryavtseva&rft.aufirst=Ganna&rft.au=Mazorchuk, Volodymyr&rft_id=https://linkinghub.elsevier.com/retrieve/pii/S0022404908000169&rfr_id=info:sid/en.wikipedia.org:Partition algebra" class="Z3988">
  11. ^ Benkart, Georgia; Moon, Dongho (2013-05-28). "Planar Rook Algebras and Tensor Representations of 𝔤𝔩(1 | 1)". Communications in Algebra. 41 (7): 2405–2416. arXiv:1201.2482v1. doi:10.1080/00927872.2012.658533. ISSN 0092-7872. S2CID 119125305.2405-2416&rft.date=2013-05-28&rft_id=info:arxiv/1201.2482v1&rft_id=https://api.semanticscholar.org/CorpusID:119125305#id-name=S2CID&rft.issn=0092-7872&rft_id=info:doi/10.1080/00927872.2012.658533&rft.aulast=Benkart&rft.aufirst=Georgia&rft.au=Moon, Dongho&rft_id=http://www.tandfonline.com/doi/abs/10.1080/00927872.2012.658533&rfr_id=info:sid/en.wikipedia.org:Partition algebra" class="Z3988">
  12. ^ Cox, Anton; Visscher, De; Doty, Stephen; Martin, Paul (2007-09-06). "On the blocks of the walled Brauer algebra". arXiv:0709.0851v1 [math.RT].

Further reading

edit