Paleoproterozoic

(Redirected from Palaeoproterozoic)

The Paleoproterozoic Era[4] (also spelled Palaeoproterozoic) is the first of the three sub-divisions (eras) of the Proterozoic eon, and also the longest era of the Earth's geological history, spanning from 2,500 to 1,600 million years ago (2.5–1.6 Ga). It is further subdivided into four geologic periods, namely the Siderian, Rhyacian, Orosirian and Statherian.

Paleoproterozoic
2500 – 1600 Ma
Paleoproterozoic stromatolites
Chronology
Proposed redefinition(s)2420–1780 Ma
Gradstein et al., 2012
Proposed subdivisionsOxygenian Period, 2420–2250 Ma

Gradstein et al., 2012
Jatulian/Eukaryian Period, 2250–2060 Ma
Gradstein et al., 2012
Columbian Period, 2060–1780 Ma

Gradstein et al., 2012
Etymology
Name formalityFormal
Alternate spelling(s)Palaeoproterozoic
Usage information
Celestial bodyEarth
Regional usageGlobal (ICS)
Time scale(s) usedICS Time Scale
Definition
Chronological unitEra
Stratigraphic unitErathem
Time span formalityFormal
Lower boundary definitionDefined Chronometrically
Lower GSSA ratified1991[1]
Upper boundary definitionDefined Chronometrically
Upper GSSA ratified1991[1]

Paleontological evidence suggests that the Earth's rotational rate ~1.8 billion years ago equated to 20-hour days, implying a total of ~450 days per year.[5] It was during this era that the continents first stabilized.[clarification needed]

Atmosphere

edit

The Earth's atmosphere was originally a weakly reducing atmosphere consisting largely of nitrogen, methane, ammonia, carbon dioxide and inert gases, in total comparable to Titan's atmosphere.[6] When oxygenic photosynthesis evolved in cyanobacteria during the Mesoarchean, the increasing amount of byproduct dioxygen began to deplete the reductants in the ocean, land surface and the atmosphere. Eventually all surface reductants (particularly ferrous iron, sulfur and atmospheric methane) were exhausted, and the atmospheric free oxygen levels soared permanently during the Siderian and Rhyacian periods in an aerochemical event called the Great Oxidation Event, which brought atmospheric oxygen from near none to up to 10% of the modern level.[7]

Life

edit

At the beginning of the preceding Archean eon, almost all existing lifeforms were single-cell prokaryotic anaerobic organisms whose metabolism was based on a form of cellular respiration that did not require oxygen, and autotrophs were either chemosynthetic or relied upon anoxygenic photosynthesis. After the Great Oxygenation Event, the then mainly archaea-dominated anaerobic microbial mats were devastated as free oxygen is highly reactive and biologically toxic to cellular structures. This was compounded by a 300-million-year-long global icehouse event known as the Huronian glaciation — at least partly due to the depletion of atmospheric methane, a powerful greenhouse gas — resulted in what is widely considered one of the first and most significant mass extinctions on Earth.[8][9] The organisms that thrived after the extinction were mainly aerobes that evolved bioactive antioxidants and eventually aerobic respiration, and surviving anaerobes were forced to live symbiotically alongside aerobes in hybrid colonies, which enabled the evolution of mitochondria in eukaryotic organisms.

The Palaeoproterozoic represents the era from which the oldest cyanobacterial fossils, those of Eoentophysalis belcherensis from the Kasegalik Formation in the Belcher Islands of Nunavut, are known.[10] By 1.75 Ga, thylakoid-bearing cyanobacteria had evolved, as evidenced by fossils from the McDermott Formation of Australia.[11]

Many crown node eukaryotes (from which the modern-day eukaryotic lineages would have arisen) have been approximately dated to around the time of the Paleoproterozoic Era.[12][13][14] While there is some debate as to the exact time at which eukaryotes evolved,[15][16] current understanding places it somewhere in this era.[17][18][19] Statherian fossils from the Changcheng Group in North China provide evidence that eukaryotic life was already diverse by the late Palaeoproterozoic.[20]

Geological events

edit

During this era, the earliest global-scale continent-continent collision belts developed. The associated continent and mountain building events are represented by the 2.1–2.0 Ga Trans-Amazonian and Eburnean orogens in South America and West Africa; the ~2.0 Ga Limpopo Belt in southern Africa; the 1.9–1.8 Ga Trans-Hudson, Penokean, Taltson–Thelon, Wopmay, Ungava and Torngat orogens in North America, the 1.9–1.8 Ga Nagssugtoqidian Orogen in Greenland; the 1.9–1.8 Ga Kola–Karelia, Svecofennian, Volhyn-Central Russian, and Pachelma orogens in Baltica (Eastern Europe); the 1.9–1.8 Ga Akitkan Orogen in Siberia; the ~1.95 Ga Khondalite Belt; the ~1.85 Ga Trans-North China Orogen in North China; and the 1.8-1.6 Ga Yavapai and Mazatzal orogenies in southern North America.

That pattern of collision belts supports the formation of a Proterozoic supercontinent named Columbia or Nuna.[21][22] That continental collisions suddenly led to mountain building at large scale is interpreted as having resulted from increased biomass and carbon burial during and after the Great Oxidation Event: Subducted carbonaceous sediments are hypothesized to have lubricated compressive deformation and led to crustal thickening.[23]

Felsic volcanism in what is now northern Sweden led to the formation of the Kiruna and Arvidsjaur porphyries.[24]

The lithospheric mantle of Patagonia's oldest blocks formed.[25]

See also

edit
  • Boring Billion – Earth history, 1.8 to 0.8 billion years ago
  • Suavjärvi impact structure – Lake and claimed impact structure in Karelia, northwest Russia
  • Francevillian biota – Possible Palaeoproterozoic multicellular fossils from Gabon
  • Vredefort impact structure – Largest verified impact structure on Earth, about 2 billion years old
  • Sudbury Basin – Third largest verified astrobleme on earth, remains of an Paleoproterozoic Era impact
  • Neoarchean – Fourth era of the Archean Eon, which immediately preceded the Paleoproterozoic

References

edit
  1. ^ a b Plumb, K. A. (June 1, 1991). "New Precambrian time scale". Episodes. 14 (2): 139–140. doi:10.18814/epiiugs/1991/v14i2/005.139-140&rft.date=1991-06-01&rft_id=info:doi/10.18814/epiiugs/1991/v14i2/005&rft.aulast=Plumb&rft.aufirst=K. A.&rft_id=https://doi.org/10.18814%2Fepiiugs%2F1991%2Fv14i2%2F005&rfr_id=info:sid/en.wikipedia.org:Paleoproterozoic" class="Z3988">
  2. ^ "palaeo-". Lexico UK English Dictionary. Oxford University Press. Archived from the original on 2020-06-18. "Proterozoic". Lexico UK English Dictionary. Oxford University Press. Archived from the original on 2020-06-17.
  3. ^ "Proterozoic". Merriam-Webster.com Dictionary. Merriam-Webster.
  4. ^ There are several ways of pronouncing Paleoproterozoic, including IPA: /ˌpæliˌprtərəˈzɪk, ˌp-, -liə-, -ˌprɒt-, -ər-, -trə-, -tr-/ PAL-ee-oh-PROH-tər-ə-ZOH-ik, PAY-, -⁠PROT-, -⁠ər-oh-, -⁠trə-, -⁠troh-.[2][3]
  5. ^ Pannella, Giorgio (1972). "Paleontological evidence on the Earth's rotational history since early precambrian". Astrophysics and Space Science. 16 (2): 212. Bibcode:1972Ap&SS..16..212P. doi:10.1007/BF00642735. S2CID 122908383.
  6. ^ Trainer, Melissa G.; Pavlov, Alexander A.; DeWitt, H. Langley; Jimenez, Jose L.; McKay, Christopher P.; Toon, Owen B.; Tolbert, Margaret A. (2006-11-28). "Organic haze on Titan and the early Earth". Proceedings of the National Academy of Sciences. 103 (48): 18035–18042. doi:10.1073/pnas.0608561103. ISSN 0027-8424. PMC 1838702. PMID 17101962.18035-18042&rft.date=2006-11-28&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1838702#id-name=PMC&rft.issn=0027-8424&rft_id=info:pmid/17101962&rft_id=info:doi/10.1073/pnas.0608561103&rft.aulast=Trainer&rft.aufirst=Melissa G.&rft.au=Pavlov, Alexander A.&rft.au=DeWitt, H. Langley&rft.au=Jimenez, Jose L.&rft.au=McKay, Christopher P.&rft.au=Toon, Owen B.&rft.au=Tolbert, Margaret A.&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1838702&rfr_id=info:sid/en.wikipedia.org:Paleoproterozoic" class="Z3988">
  7. ^ Ossa Ossa, Frantz; Spangenberg, Jorge E.; Bekker, Andrey; König, Stephan; Stüeken, Eva E.; Hofmann, Axel; Poulton, Simon W.; Yierpan, Aierken; Varas-Reus, Maria I.; Eickmann, Benjamin; Andersen, Morten B.; Schoenberg, Ronny (15 September 2022). "Moderate levels of oxygenation during the late stage of Earth's Great Oxidation Event". Earth and Planetary Science Letters. 863: 117716. doi:10.1016/j.epsl.2022.117716. hdl:10481/78482.
  8. ^ Hodgskiss, Malcolm S. W.; Crockford, Peter W.; Peng, Yongbo; Wing, Boswell A.; Horner, Tristan J. (27 August 2019). "A productivity collapse to end Earth's Great Oxidation". Proceedings of the National Academy of Sciences of the United States of America. 116 (35): 17207–17212. Bibcode:2019PNAS..11617207H. doi:10.1073/pnas.1900325116. PMC 6717284. PMID 31405980.17207-17212&rft.date=2019-08-27&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6717284#id-name=PMC&rft_id=info:pmid/31405980&rft_id=info:doi/10.1073/pnas.1900325116&rft_id=info:bibcode/2019PNAS..11617207H&rft.aulast=Hodgskiss&rft.aufirst=Malcolm S. W.&rft.au=Crockford, Peter W.&rft.au=Peng, Yongbo&rft.au=Wing, Boswell A.&rft.au=Horner, Tristan J.&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6717284&rfr_id=info:sid/en.wikipedia.org:Paleoproterozoic" class="Z3988">
  9. ^ Margulis, Lynn; Sagan, Dorion (1997-05-29). Microcosmos: Four Billion Years of Microbial Evolution. University of California Press. ISBN 9780520210646.
  10. ^ Hodgskiss, Malcolm S.W.; Dagnaud, Olivia M.J.; Frost, Jamie L.; Halverson, Galen P.; Schmitz, Mark D.; Swanson-Hysell, Nicholas L.; Sperling, Erik A. (15 August 2019). "New insights on the Orosirian carbon cycle, early Cyanobacteria, and the assembly of Laurentia from the Paleoproterozoic Belcher Group". Earth and Planetary Science Letters. 520: 141–152. doi:10.1016/j.epsl.2019.05.023. Retrieved 18 May 2024 – via Elsevier Science Direct.141-152&rft.date=2019-08-15&rft_id=info:doi/10.1016/j.epsl.2019.05.023&rft.aulast=Hodgskiss&rft.aufirst=Malcolm S.W.&rft.au=Dagnaud, Olivia M.J.&rft.au=Frost, Jamie L.&rft.au=Halverson, Galen P.&rft.au=Schmitz, Mark D.&rft.au=Swanson-Hysell, Nicholas L.&rft.au=Sperling, Erik A.&rft_id=https://linkinghub.elsevier.com/retrieve/pii/S0012821X19302936&rfr_id=info:sid/en.wikipedia.org:Paleoproterozoic" class="Z3988">
  11. ^ Demoulin, Catherine F.; Lara, Yannick J.; Lambion, Alexandre; Javaux, Emmanuelle J. (18 January 2024). "Oldest thylakoids in fossil cells directly evidence oxygenic photosynthesis". Nature. 625 (7995): 529–534. doi:10.1038/s41586-023-06896-7. ISSN 0028-0836. Retrieved 24 June 2024.529-534&rft.date=2024-01-18&rft_id=info:doi/10.1038/s41586-023-06896-7&rft.issn=0028-0836&rft.aulast=Demoulin&rft.aufirst=Catherine F.&rft.au=Lara, Yannick J.&rft.au=Lambion, Alexandre&rft.au=Javaux, Emmanuelle J.&rft_id=https://www.nature.com/articles/s41586-023-06896-7&rfr_id=info:sid/en.wikipedia.org:Paleoproterozoic" class="Z3988">
  12. ^ Mänd, Kaarel; Planavsky, Noah J.; Porter, Susannah M.; Robbins, Leslie J.; Wang, Changle; Kraitsmann, Timmu; Paiste, Kärt; Paiste, Päärn; Romashkin, Alexander E.; Deines, Yulia E.; Kirsimäe, Kalle; Lepland, Aivo; Konhauser, Kurt O. (15 April 2022). "Chromium evidence for protracted oxygenation during the Paleoproterozoic". Earth and Planetary Science Letters. 584: 117501. doi:10.1016/j.epsl.2022.117501. hdl:10037/24808. Retrieved 15 December 2022.
  13. ^ Hedges, S Blair; Chen, Hsiong; Kumar, Sudhir; Wang, Daniel YC; Thompson, Amanda S; Watanabe, Hidemi (2001-09-12). "A genomic timescale for the origin of eukaryotes". BMC Evolutionary Biology. 1: 4. doi:10.1186/1471-2148-1-4. ISSN 1471-2148. PMC 56995. PMID 11580860.
  14. ^ Hedges, S Blair; Blair, Jaime E; Venturi, Maria L; Shoe, Jason L (2004-01-28). "A molecular timescale of eukaryote evolution and the rise of complex multicellular life". BMC Evolutionary Biology. 4: 2. doi:10.1186/1471-2148-4-2. ISSN 1471-2148. PMC 341452. PMID 15005799.
  15. ^ Rodríguez-Trelles, Francisco; Tarrío, Rosa; Ayala, Francisco J. (2002-06-11). "A methodological bias toward overestimation of molecular evolutionary time scales". Proceedings of the National Academy of Sciences of the United States of America. 99 (12): 8112–8115. Bibcode:2002PNAS...99.8112R. doi:10.1073/pnas.122231299. ISSN 0027-8424. PMC 123029. PMID 12060757.8112-8115&rft.date=2002-06-11&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC123029#id-name=PMC&rft_id=info:bibcode/2002PNAS...99.8112R&rft_id=info:pmid/12060757&rft_id=info:doi/10.1073/pnas.122231299&rft.issn=0027-8424&rft.aulast=Rodríguez-Trelles&rft.aufirst=Francisco&rft.au=Tarrío, Rosa&rft.au=Ayala, Francisco J.&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC123029&rfr_id=info:sid/en.wikipedia.org:Paleoproterozoic" class="Z3988">
  16. ^ Stechmann, Alexandra; Cavalier-Smith, Thomas (2002-07-05). "Rooting the eukaryote tree by using a derived gene fusion". Science. 297 (5578): 89–91. Bibcode:2002Sci...297...89S. doi:10.1126/science.1071196. ISSN 1095-9203. PMID 12098695. S2CID 21064445.89-91&rft.date=2002-07-05&rft_id=https://api.semanticscholar.org/CorpusID:21064445#id-name=S2CID&rft_id=info:bibcode/2002Sci...297...89S&rft.issn=1095-9203&rft_id=info:doi/10.1126/science.1071196&rft_id=info:pmid/12098695&rft.aulast=Stechmann&rft.aufirst=Alexandra&rft.au=Cavalier-Smith, Thomas&rfr_id=info:sid/en.wikipedia.org:Paleoproterozoic" class="Z3988">
  17. ^ Ayala, Francisco José; Rzhetsky, Andrey; Ayala, Francisco J. (1998-01-20). "Origin of the metazoan phyla: Molecular clocks confirm paleontological estimates". Proceedings of the National Academy of Sciences of the United States of America. 95 (2): 606–611. Bibcode:1998PNAS...95..606J. doi:10.1073/pnas.95.2.606. ISSN 0027-8424. PMC 18467. PMID 9435239.606-611&rft.date=1998-01-20&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC18467#id-name=PMC&rft_id=info:bibcode/1998PNAS...95..606J&rft_id=info:pmid/9435239&rft_id=info:doi/10.1073/pnas.95.2.606&rft.issn=0027-8424&rft.aulast=Ayala&rft.aufirst=Francisco José&rft.au=Rzhetsky, Andrey&rft.au=Ayala, Francisco J.&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC18467&rfr_id=info:sid/en.wikipedia.org:Paleoproterozoic" class="Z3988">
  18. ^ Wang, D Y; Kumar, S; Hedges, S B (1999-01-22). "Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi". Proceedings of the Royal Society B: Biological Sciences. 266 (1415): 163–171. doi:10.1098/rspb.1999.0617. PMC 1689654. PMID 10097391.163-171&rft.date=1999-01-22&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1689654#id-name=PMC&rft_id=info:pmid/10097391&rft_id=info:doi/10.1098/rspb.1999.0617&rft.aulast=Wang&rft.aufirst=D Y&rft.au=Kumar, S&rft.au=Hedges, S B&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1689654&rfr_id=info:sid/en.wikipedia.org:Paleoproterozoic" class="Z3988">
  19. ^ Javaux, Emmanuelle J.; Lepot, Kevin (January 2018). "The Paleoproterozoic fossil record: Implications for the evolution of the biosphere during Earth's middle-age". Earth-Science Reviews. 176: 68–86. doi:10.1016/j.earscirev.2017.10.001. hdl:20.500.12210/62416.68-86&rft.date=2018-01&rft_id=info:hdl/20.500.12210/62416&rft_id=info:doi/10.1016/j.earscirev.2017.10.001&rft.aulast=Javaux&rft.aufirst=Emmanuelle J.&rft.au=Lepot, Kevin&rft_id=https://doi.org/10.1016%2Fj.earscirev.2017.10.001&rfr_id=info:sid/en.wikipedia.org:Paleoproterozoic" class="Z3988">
  20. ^ Miao, Lanyun; Moczydłowska, Małgorzata; Zhu, Shixing; Zhu, Maoyan (February 2019). "New record of organic-walled, morphologically distinct microfossils from the late Paleoproterozoic Changcheng Group in the Yanshan Range, North China". Precambrian Research. 321: 172–198. doi:10.1016/j.precamres.2018.11.019. S2CID 134362289. Retrieved 29 December 2022.172-198&rft.date=2019-02&rft_id=info:doi/10.1016/j.precamres.2018.11.019&rft_id=https://api.semanticscholar.org/CorpusID:134362289#id-name=S2CID&rft.aulast=Miao&rft.aufirst=Lanyun&rft.au=Moczydłowska, Małgorzata&rft.au=Zhu, Shixing&rft.au=Zhu, Maoyan&rft_id=https://www.sciencedirect.com/science/article/abs/pii/S0301926818301827&rfr_id=info:sid/en.wikipedia.org:Paleoproterozoic" class="Z3988">
  21. ^ Zhao, Guochun; Cawood, Peter A; Wilde, Simon A; Sun, Min (2002). "Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent". Earth-Science Reviews. 59 (1–4): 125–162. Bibcode:2002ESRv...59..125Z. doi:10.1016/S0012-8252(02)00073-9.1–4&rft.pages=125-162&rft.date=2002&rft_id=info:doi/10.1016/S0012-8252(02)50073-9&rft_id=info:bibcode/2002ESRv...59..125Z&rft.aulast=Zhao&rft.aufirst=Guochun&rft.au=Cawood, Peter A&rft.au=Wilde, Simon A&rft.au=Sun, Min&rfr_id=info:sid/en.wikipedia.org:Paleoproterozoic" class="Z3988">
  22. ^ Zhao, Guochun; Sun, M.; Wilde, Simon A.; Li, S.Z. (2004). "A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup". Earth-Science Reviews. 67 (1–2): 91–123. Bibcode:2004ESRv...67...91Z. doi:10.1016/j.earscirev.2004.02.003.1–2&rft.pages=91-123&rft.date=2004&rft_id=info:doi/10.1016/j.earscirev.2004.02.003&rft_id=info:bibcode/2004ESRv...67...91Z&rft.aulast=Zhao&rft.aufirst=Guochun&rft.au=Sun, M.&rft.au=Wilde, Simon A.&rft.au=Li, S.Z.&rft_id=http://www.gt-crust.ru/jour/article/view/518&rfr_id=info:sid/en.wikipedia.org:Paleoproterozoic" class="Z3988">
  23. ^ John Parnell, Connor Brolly: Increased biomass and carbon burial 2 billion years ago triggered mountain building. Nature Communications Earth & Environment, 2021, doi:10.1038/s43247-021-00313-5 (Open Access).
  24. ^ Lundqvist, Thomas (2009). Porfyr i Sverige: En geologisk översikt (in Swedish). Sveriges geologiska undersökning. pp. 24–27. ISBN 978-91-7158-960-6.24-27&rft.pub=Sveriges geologiska undersökning&rft.date=2009&rft.isbn=978-91-7158-960-6&rft.aulast=Lundqvist&rft.aufirst=Thomas&rfr_id=info:sid/en.wikipedia.org:Paleoproterozoic" class="Z3988">
  25. ^ Schilling, Manuel Enrique; Carlson, Richard Walter; Tassara, Andrés; Conceição, Rommulo Viveira; Berotto, Gustavo Walter; Vásquez, Manuel; Muñoz, Daniel; Jalowitzki, Tiago; Gervasoni, Fernanda; Morata, Diego (2017). "The origin of Patagonia revealed by Re-Os systematics of mantle xenoliths". Precambrian Research. 294: 15–32. Bibcode:2017PreR..294...15S. doi:10.1016/j.precamres.2017.03.008. hdl:11336/19304.15-32&rft.date=2017&rft_id=info:hdl/11336/19304&rft_id=info:doi/10.1016/j.precamres.2017.03.008&rft_id=info:bibcode/2017PreR..294...15S&rft.aulast=Schilling&rft.aufirst=Manuel Enrique&rft.au=Carlson, Richard Walter&rft.au=Tassara, Andrés&rft.au=Conceição, Rommulo Viveira&rft.au=Berotto, Gustavo Walter&rft.au=Vásquez, Manuel&rft.au=Muñoz, Daniel&rft.au=Jalowitzki, Tiago&rft.au=Gervasoni, Fernanda&rft.au=Morata, Diego&rfr_id=info:sid/en.wikipedia.org:Paleoproterozoic" class="Z3988">
edit