Isotopes of nickel

(Redirected from Nickel-63)

Naturally occurring nickel (28Ni) is composed of five stable isotopes; 58
Ni
, 60
Ni
, 61
Ni
, 62
Ni
and 64
Ni
, with 58
Ni
being the most abundant (68.077% natural abundance).[4] 26 radioisotopes have been characterised with the most stable being 59
Ni
with a half-life of 76,000 years, 63
Ni
with a half-life of 100.1 years, and 56
Ni
with a half-life of 6.077 days. All of the remaining radioactive isotopes have half-lives that are less than 60 hours and the majority of these have half-lives that are less than 30 seconds. This element also has 8 meta states.

Isotopes of nickel (28Ni)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
58Ni 68.1% stable
59Ni trace 7.6×104 y ε 59Co
60Ni 26.2% stable
61Ni 1.14% stable
62Ni 3.63% stable
63Ni synth 100 y β 63Cu
64Ni 0.926% stable
Standard atomic weight Ar°(Ni)

List of isotopes

edit
Nuclide
[n 1]
Z N Isotopic mass (Da)[5]
[n 2][n 3]
Half-life[1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6]
Spin and
parity[1]
[n 7][n 4]
Natural abundance (mole fraction)
Excitation energy Normal proportion[1] Range of variation
48
Ni
28 20 48.01952(46)# 2.8(8) ms 2p (70%) 46
Fe
0
β (30%) 48
Co
β , p? 47
Fe
49
Ni
28 21 49.00916(64)# 7.5(10) ms β , p (83%) 48
Fe
7/2−#
β (17%) 49
Co
50
Ni
28 22 49.99629(54)# 18.5(12) ms β , p (73%) 49
Fe
0
β , 2p (14%) 48
Mn
β (13%) 50
Co
51
Ni
28 23 50.98749(54)# 23.8(2) ms β , p (87.2%) 50
Fe
7/2−#
β (12.3%) 51
Co
β , 2p (0.5%) 49
Mn
52
Ni
28 24 51.975781(89) 41.8(10) ms β (68.9%) 52
Co
0
β , p (31.1%) 51
Fe
53
Ni
28 25 52.968190(27) 55.2(7) ms β (77.3%) 53
Co
(7/2−)
β , p (22.7%) 52
Fe
54
Ni
28 26 53.9578330(50) 114.1(3) ms β 54
Co
0
β , p? 53
Fe
54m
Ni
6457.4(9) keV 152(4) ns IT (64%) 54
Ni
10
p (36%) 53
Co
55
Ni
28 27 54.95132985(76) 203.9(13) ms β 55
Co
7/2−
56
Ni
28 28 55.94212776(43) 6.075(10) d EC 56
Co
0
β (<5.8×10−5%)[6] 56
Co
57
Ni
28 29 56.93979139(61) 35.60(6) h β 57
Co
3/2−
58
Ni
28 30 57.93534165(37) Observationally stable[n 8] 0 0.680769(190)
59
Ni
28 31 58.93434544(38) 8.1(5)×104 y EC (99%) 59
Co
3/2−
β (1.5×10−5%)[7]
60
Ni
28 32 59.93078513(38) Stable 0 0.262231(150)
61
Ni
28 33 60.93105482(38) Stable 3/2− 0.011399(13)
62
Ni
[n 9]
28 34 61.92834475(46) Stable 0 0.036345(40)
63
Ni
28 35 62.92966902(46) 101.2(15) y β 63
Cu
1/2−
63m
Ni
87.15(11) keV 1.67(3) μs IT 63Ni 5/2−
64
Ni
28 36 63.92796623(50) Stable 0 0.009256(19)
65
Ni
28 37 64.93008459(52) 2.5175(5) h β 65
Cu
5/2−
65m
Ni
63.37(5) keV 69(3) μs IT 65Ni 1/2−
66
Ni
28 38 65.9291393(15) 54.6(3) h β 66
Cu
0
67
Ni
28 39 66.9315694(31) 21(1) s β 67
Cu
1/2−
67m
Ni
1006.6(2) keV 13.34(19) μs IT 67
Ni
9/2
IT 67
Ni
68
Ni
28 40 67.9318688(32) 29(2) s β 68
Cu
0
68m1
Ni
1603.51(28) keV 270(5) ns IT 68Ni 0
68m2
Ni
2849.1(3) keV 850(30) μs IT 68Ni 5−
69
Ni
28 41 68.9356103(40) 11.4(3) s β 69
Cu
(9/2 )
69m1
Ni
321(2) keV 3.5(4) s β 69
Cu
(1/2−)
IT (<0.01%) 69
Ni
69m2
Ni
2700.0(10) keV 439(3) ns IT 69Ni (17/2−)
70
Ni
28 42 69.9364313(23) 6.0(3) s β 70
Cu
0
70m
Ni
2860.91(8) keV 232(1) ns IT 70Ni 8
71
Ni
28 43 70.9405190(24) 2.56(3) s β 71
Cu
(9/2 )
71m
Ni
499(5) keV 2.3(3) s β 71Cu (1/2−)
72
Ni
28 44 71.9417859(24) 1.57(5) s β 72
Cu
0
β, n? 71
Cu
73
Ni
28 45 72.9462067(26) 840(30) ms β 73
Cu
(9/2 )
β, n? 72
Cu
74
Ni
28 46 73.9479853(38)[8] 507.7(46) ms β 74
Cu
0
β, n? 73
Cu
75
Ni
28 47 74.952704(16)[8] 331.6(32) ms β (90.0%) 75
Cu
9/2 #
β, n (10.0%) 74
Cu
76
Ni
28 48 75.95471(32)# 234.6(27) ms β (86.0%) 76
Cu
0
β, n (14.0%) 75
Cu
76m
Ni
2418.0(5) keV 547.8(33) ns IT 76Ni (8 )
77
Ni
28 49 76.95990(43)# 158.9(42) ms β (74%) 77
Cu
9/2 #
β, n (26%) 76
Cu
β, 2n? 75
Cu
78
Ni
28 50 77.96256(43)# 122.2(51) ms β 78
Cu
0
β, n? 77
Cu
β, 2n? 76
Cu
79
Ni
28 51 78.96977(54)# 44(8) ms β 79
Cu
5/2 #
β, n? 78
Cu
β, 2n? 77
Cu
80
Ni
28 52 79.97505(64)# 30(22) ms β 80
Cu
0
β, n? 79
Cu
β, 2n? 78
Cu
81
Ni
28 53 80.98273(75)# 30# ms
[>410 ns]
β? 81
Cu
3/2 #
82
Ni
28 54 81.98849(86)# 16# ms
[>410 ns]
β? 82
Cu
0
This table header & footer:
  1. ^ mNi – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ a b # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^ Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
  6. ^ Bold symbol as daughter – Daughter product is stable.
  7. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  8. ^ Believed to decay by β β to 58
    Fe
    with a half-life over 7×1020 years
  9. ^ Highest binding energy per nucleon of all nuclides

Notable isotopes

edit

The known isotopes of nickel range in mass number from 48
Ni
to 82
Ni
, and include:[9]

Nickel-48, discovered in 1999, is the most neutron-poor nickel isotope known. With 28 protons and 20 neutrons 48
Ni
is "doubly magic" (like 208
Pb
) and therefore much more stable (with a lower limit of its half-life-time of .5 μs) than would be expected from its position in the chart of nuclides.[10] It has the highest ratio of protons to neutrons (proton excess) of any known doubly magic nuclide.[11]

Nickel-56 is produced in large quantities in supernovae. In the last phases of stellar evolution of very large stars, nuclear fusion of lighter elements like hydrogen and helium comes to an end. Later in the star's life cycle, elements including magnesium, silicon, and sulfur are fused to form heavier elements. Once the last nuclear fusion reactions cease, the star collapses to produce a supernova. During the supernova, silicon burning produces 56Ni. This isotope of nickel is favored because it has an equal number of neutrons and protons, making it readily produced by fusing two 28Si atoms. 56Ni is the final element that can be formed in the alpha process. Past 56Ni, nuclear reactions would be endoergic and would be energetically unfavorable. Once 56Ni is formed it subsequently decays to 56Co and then 56Fe by β decay.[12] The radioactive decay of  56Ni and 56Co supplies much of the energy for the light curves observed for stellar supernovae.[13] The shape of the light curve of these supernovae display characteristic timescales corresponding to the decay of 56Ni to 56Co and then to 56Fe.

Nickel-58 is the most abundant isotope of nickel, making up 68.077% of the natural abundance. Possible sources include electron capture from copper-58 and EC p from zinc-59.

Nickel-59 is a long-lived cosmogenic radionuclide with a half-life of 76,000 years. 59
Ni
has found many applications in isotope geology. 59
Ni
has been used to date the terrestrial age of meteorites and to determine abundances of extraterrestrial dust in ice and sediment.

Nickel-60 is the daughter product of the extinct radionuclide 60
Fe
(half-life = 2.6 My). Because 60
Fe
had such a long half-life, its persistence in materials in the Solar System at high enough concentrations may have generated observable variations in the isotopic composition of 60
Ni
. Therefore, the abundance of 60
Ni
present in extraterrestrial material may provide insight into the origin of the Solar System and its early history/very early history. Unfortunately, nickel isotopes appear to have been heterogeneously distributed in the early Solar System. Therefore, so far, no actual age information has been attained from 60
Ni
excesses. 60
Ni
is also the stable end-product of the decay of 60
Zn
, the product of the final rung of the alpha ladder. Other sources may also include beta decay from cobalt-60 and electron capture from copper-60.

Nickel-61 is the only stable isotope of nickel with a nuclear spin (I = 3/2), which makes it useful for studies by EPR spectroscopy.[14]

Nickel-62 has the highest binding energy per nucleon of any isotope for any element, when including the electron shell in the calculation. More energy is released forming this isotope than any other, although fusion can form heavier isotopes. For instance, two 40
Ca
atoms can fuse to form 80
Kr
plus 4 positrons (plus 4 neutrinos), liberating 77 keV per nucleon, but reactions leading to the iron/nickel region are more probable as they release more energy per baryon.

Nickel-63 has two main uses: Detection of explosives traces, and in certain kinds of electronic devices, such as gas discharge tubes used as surge protectors. A surge protector is a device that protects sensitive electronic equipment like computers from sudden changes in the electric current flowing into them. It is also used in Electron capture detector in gas chromatography for the detection mainly of halogens. It is proposed to be used for miniature betavoltaic generators for pacemakers.

Nickel-64 is another stable isotope of nickel. Possible sources include beta decay from cobalt-64, and electron capture from copper-64.

Nickel-78 is one of the element's heaviest known isotopes. With 28 protons and 50 neutrons, nickel-78 is doubly magic, resulting in much greater nuclear binding energy and stability despite having a lopsided neutron-proton ratio. It has a half-life of 122 ± 5.1 milliseconds.[15] As a consequence of its magic neutron number, nickel-78 is believed to have an important involvement in supernova nucleosynthesis of elements heavier than iron.[16] 78Ni, along with N = 50 isotones 79Cu and 80Zn, are thought to constitute a waiting point in the r-process, where further neutron capture is delayed by the shell gap and a buildup of isotopes around A = 80 results.[17]

References

edit
  1. ^ a b c d e Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Nickel". CIAAW. 2007.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (4 May 2022). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ "Isotopes of the Element Nickel". Science education. Jefferson Lab.
  5. ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  6. ^ Sur, Bhaskar; Norman, Eric B.; Lesko, K. T.; Browne, Edgardo; Larimer, Ruth-Mary (1 August 1990). "Reinvestigation of Ni 56 decay". Physical Review C. 42 (2): 573–580. doi:10.1103/PhysRevC.42.573.573-580&rft.date=1990-08-01&rft_id=info:doi/10.1103/PhysRevC.42.573&rft.aulast=Sur&rft.aufirst=Bhaskar&rft.au=Norman, Eric B.&rft.au=Lesko, K. T.&rft.au=Browne, Edgardo&rft.au=Larimer, Ruth-Mary&rfr_id=info:sid/en.wikipedia.org:Isotopes of nickel" class="Z3988">
  7. ^ I. Gresits; S. Tölgyesi (September 2003). "Determination of soft X-ray emitting isotopes in radioactive liquid wastes of nuclear power plants". Journal of Radioanalytical and Nuclear Chemistry. 258 (1): 107–112. doi:10.1023/A:1026214310645. S2CID 93334310.107-112&rft.date=2003-09&rft_id=info:doi/10.1023/A:1026214310645&rft_id=https://api.semanticscholar.org/CorpusID:93334310#id-name=S2CID&rft.au=I. Gresits&rft.au=S. Tölgyesi&rfr_id=info:sid/en.wikipedia.org:Isotopes of nickel" class="Z3988">
  8. ^ a b Giraud, S.; Canete, L.; Bastin, B.; Kankainen, A.; Fantina, A.F.; Gulminelli, F.; Ascher, P.; Eronen, T.; Girard-Alcindor, V.; Jokinen, A.; Khanam, A.; Moore, I.D.; Nesterenko, D.A.; de Oliveira Santos, F.; Penttilä, H.; Petrone, C.; Pohjalainen, I.; De Roubin, A.; Rubchenya, V.A.; Vilen, M.; Äystö, J. (October 2022). "Mass measurements towards doubly magic 78Ni: Hydrodynamics versus nuclear mass contribution in core-collapse supernovae". Physics Letters B. 833: 137309. doi:10.1016/j.physletb.2022.137309.
  9. ^ "New nuclides included for the first time in the 2017 evaluation" (PDF). Discovery of Nuclides Project. 22 December 2018. Retrieved 22 May 2018.
  10. ^ "Discovery of doubly magic nickel". CERN Courier. 15 March 2000. Retrieved 2 April 2013.
  11. ^ "Twice-magic metal makes its debut | Science News | Find Articles". Archived from the original on 24 May 2012.
  12. ^ Umeda, Hideyuki; Nomoto, Ken’ichi (1 February 2008). "How Much 56Ni Can Be Produced in Core‐Collapse Supernovae? Evolution and Explosions of 30–100M⊙ Stars". The Astrophysical Journal. 673 (2): 1014–1022 – via The Institute of Physics (IOP).1014-1022&rft.date=2008-02-01&rft.aulast=Umeda&rft.aufirst=Hideyuki&rft.au=Nomoto, Ken’ichi&rft_id=https://doi.org/10.1086/524767&rfr_id=info:sid/en.wikipedia.org:Isotopes of nickel" class="Z3988">
  13. ^ Bouchet, P.; Danziger, I.J.; Lucy, L.B. (September 1991). "Bolometric Light Curve of SN 1987A: Results from Day 616 to 1316 After Outburst". The Astronomical Journal. 102 (3): 1135–1146 – via Astrophysics Data System.1135-1146&rft.date=1991-09&rft.aulast=Bouchet&rft.aufirst=P.&rft.au=Danziger, I.J.&rft.au=Lucy, L.B.&rft_id=https://doi.org/10.1086/115939&rfr_id=info:sid/en.wikipedia.org:Isotopes of nickel" class="Z3988">
  14. ^ Maurice van Gastel; Wolfgang Lubitz (2009). "EPR Investigation of [NiFe] Hydrogenases". In Graeme Hanson; Lawrence Berliner (eds.). High Resolution EPR: Applications to Metalloenzymes and Metals in Medicine. Dordrecht: Springer. pp. 441–470. ISBN 9780387848563.
  15. ^ Bazin, D. (2017). "Viewpoint: Doubly Magic Nickel". Physics. 10 (121): 121. doi:10.1103/Physics.10.121.
  16. ^ Davide Castelvecchi (22 April 2005). "Atom Smashers Shed Light on Supernovae, Big Bang". Sky & Telescope.
  17. ^ Pereira, J.; Aprahamian, A.; Arndt, O.; Becerril, A.; Elliot, T.; Estrade, A.; Galaviz, D.; Hennrich, S.; Hosmer, P.; Kessler, R.; Kratz, K.-L.; Lorusso, G.; Mantica, P.F.; Matos, M.; Montes, F.; Santi, P.; Pfeiffer, B.; Quinn, M.; Schatz, H.; Schertz, F.; Schnorrenberger, L.; Smith, E.; Tomlin, B.E.; Walters, W.; Wöhr, A. (2009). Beta decay studies of r-process nuclei at the National Superconducting Cyclotron Laboratory. 10th Symposium on Nuclei in the Cosmos. Mackinac Island. arXiv:0901.1802.