In mathematics, the necklace ring is a ring introduced by Metropolis and Rota (1983) to elucidate the multiplicative properties of necklace polynomials.
Definition
editIf A is a commutative ring then the necklace ring over A consists of all infinite sequences of elements of A. Addition in the necklace ring is given by pointwise addition of sequences. Multiplication is given by a sort of arithmetic convolution: the product of and has components
where is the least common multiple of and , and is their greatest common divisor.
This ring structure is isomorphic to the multiplication of formal power series written in "necklace coordinates": that is, identifying an integer sequence with the power series .
See also
editReferences
edit- Hazewinkel, Michiel (2009). "Witt vectors I". Handbook of Algebra. Vol. 6. Elsevier/North-Holland. pp. 319–472. arXiv:0804.3888. Bibcode:2008arXiv0804.3888H. ISBN 978-0-444-53257-2. MR 2553661.319-472&rft.pub=Elsevier/North-Holland&rft.date=2009&rft_id=info:arxiv/0804.3888&rft_id=https://mathscinet.ams.org/mathscinet-getitem?mr=2553661#id-name=MR&rft_id=info:bibcode/2008arXiv0804.3888H&rft.isbn=978-0-444-53257-2&rft.aulast=Hazewinkel&rft.aufirst=Michiel&rfr_id=info:sid/en.wikipedia.org:Necklace ring" class="Z3988">
- Metropolis, N.; Rota, Gian-Carlo (1983). "Witt vectors and the algebra of necklaces". Advances in Mathematics. 50 (2): 95–125. doi:10.1016/0001-8708(83)90035-X. MR 0723197.95-125&rft.date=1983&rft_id=info:doi/10.1016/0001-8708(83)90035-X&rft_id=https://mathscinet.ams.org/mathscinet-getitem?mr=723197#id-name=MR&rft.aulast=Metropolis&rft.aufirst=N.&rft.au=Rota, Gian-Carlo&rft_id=https://doi.org/10.1016%2F0001-8708%2883%2990035-X&rfr_id=info:sid/en.wikipedia.org:Necklace ring" class="Z3988">