Monovalent cation:proton antiporter-1

The Monovalent Cation:Proton Antiporter-1 (CPA1) Family (TC# 2.A.36) is a large family of proteins derived from Gram-positive and Gram-negative bacteria, blue-green bacteria, archaea, yeast, plants and animals. The CPA1 family belongs to the VIC superfamily.[1][2] Transporters from eukaryotes have been functionally characterized to catalyze Na :H exchange. Their primary physiological functions are thought to be in (1) cytoplasmic pH regulation, extruding the H generated during metabolism, and (2) salt tolerance (in plants), due to Na uptake into vacuoles. Bacterial homologues have also been found to facilitate Na :H antiport, but some also catalyze Li :H antiport or Ca2 :H antiport under certain conditions.[3]

Sodium/hydrogen exchanger family
Identifiers
SymbolNa_H_Exchanger
PfamPF00999
TCDB2.A.36
OPM superfamily106
OPM protein4bwz
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary

Phylogeny

edit

The phylogenetic tree for the CPA1 family shows three principal clusters. The first cluster includes proteins derived exclusively from animals, and all of the functionally characterized members of the family belong to this cluster. Of the two remaining clusters, one includes all bacterial homologues while the other includes one from Arabidopsis thaliana, one from Homo sapiens and two from yeast (S. cerevisiae and S. pombe). Several organisms possess multiple paralogues; for example, seven paralogues are found in C. elegans, and five are known in humans. Most of these paralogues are very similar in sequence, and they belong to the animal-specific cluster.[2]

A representative list of proteins belonging to the CPA1 family can be found in the Transporter Classification Database.

Structure

edit

Numerous members of the CPA1 family have been sequenced, and these proteins vary substantially in size. The bacterial proteins have 520-550 amino acyl residues (aas) while eukaryotic proteins are generally larger, varying in size from 540-900 residues. They exhibit 10-12 putative transmembrane α-helical spanners (TMSs). A proposed topological model suggests that in addition to 12 TMSs, a region between TMSs 9 and 10 dips into the membrane to line the pore. However, one homologue, Nhx1 of S. cerevisiae (TC# 2.A.36.1.12), has an extracellular glycosylated C-terminus.[4][5]

Function

edit

Using the mammalian NHE1 (TC# 2.A.36.1.1), it has been found that TMSs 4 and 9 as well as the extracellular loop between TMSs 3 and 4 are important for drug (amiloride- and benzoyl guanidinium-based derivatives) sensitivities. Mutations in these regions also affect transport activities. M4 and M9 therefore contain critical sites for both drug and cation recognition.

Transport Reaction

edit

The generalized transport reaction catalyzed by functionally characterized members of the CPA1 family is:[6]

Na (out) H (in) ⇌ Na (in) H (out).

See also

edit

References

edit
  1. ^ Chang AB, Lin R, Keith Studley W, Tran CV, Saier MH (2004-06-01). "Phylogeny as a guide to structure and function of membrane transport proteins". Molecular Membrane Biology. 21 (3): 171–81. doi:10.1080/09687680410001720830. PMID 15204625. S2CID 45284885.171-81&rft.date=2004-06-01&rft_id=https://api.semanticscholar.org/CorpusID:45284885#id-name=S2CID&rft_id=info:pmid/15204625&rft_id=info:doi/10.1080/09687680410001720830&rft.aulast=Chang&rft.aufirst=AB&rft.au=Lin, R&rft.au=Keith Studley, W&rft.au=Tran, CV&rft.au=Saier, MH&rfr_id=info:sid/en.wikipedia.org:Monovalent cation:proton antiporter-1" class="Z3988">
  2. ^ a b Saier MH, Eng BH, Fard S, Garg J, Haggerty DA, Hutchinson WJ, Jack DL, Lai EC, Liu HJ, Nusinew DP, Omar AM, Pao SS, Paulsen IT, Quan JA, Sliwinski M, Tseng TT, Wachi S, Young GB (February 1999). "Phylogenetic characterization of novel transport protein families revealed by genome analyses". Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes. 1422 (1): 1–56. doi:10.1016/s0304-4157(98)00023-9. PMID 10082980.1-56&rft.date=1999-02&rft_id=info:doi/10.1016/s0304-4157(98)50023-9&rft_id=info:pmid/10082980&rft.aulast=Saier&rft.aufirst=MH&rft.au=Eng, BH&rft.au=Fard, S&rft.au=Garg, J&rft.au=Haggerty, DA&rft.au=Hutchinson, WJ&rft.au=Jack, DL&rft.au=Lai, EC&rft.au=Liu, HJ&rft.au=Nusinew, DP&rft.au=Omar, AM&rft.au=Pao, SS&rft.au=Paulsen, IT&rft.au=Quan, JA&rft.au=Sliwinski, M&rft.au=Tseng, TT&rft.au=Wachi, S&rft.au=Young, GB&rfr_id=info:sid/en.wikipedia.org:Monovalent cation:proton antiporter-1" class="Z3988">
  3. ^ Waditee R, Hibino T, Tanaka Y, Nakamura T, Incharoensakdi A, Takabe T (October 2001). "Halotolerant cyanobacterium Aphanothece halophytica contains an Na( )/H( ) antiporter, homologous to eukaryotic ones, with novel ion specificity affected by C-terminal tail". The Journal of Biological Chemistry. 276 (40): 36931–8. doi:10.1074/jbc.M103650200. PMID 11479290.36931-8&rft.date=2001-10&rft_id=info:doi/10.1074/jbc.M103650200&rft_id=info:pmid/11479290&rft.aulast=Waditee&rft.aufirst=R&rft.au=Hibino, T&rft.au=Tanaka, Y&rft.au=Nakamura, T&rft.au=Incharoensakdi, A&rft.au=Takabe, T&rft_id=https://doi.org/10.1074%2Fjbc.M103650200&rfr_id=info:sid/en.wikipedia.org:Monovalent cation:proton antiporter-1" class="Z3988">
  4. ^ Wakabayashi S, Pang T, Su X, Shigekawa M (March 2000). "A novel topology model of the human Na( )/H( ) exchanger isoform 1". The Journal of Biological Chemistry. 275 (11): 7942–9. doi:10.1074/jbc.275.11.7942. PMID 10713111.7942-9&rft.date=2000-03&rft_id=info:doi/10.1074/jbc.275.11.7942&rft_id=info:pmid/10713111&rft.aulast=Wakabayashi&rft.aufirst=S&rft.au=Pang, T&rft.au=Su, X&rft.au=Shigekawa, M&rft_id=https://doi.org/10.1074%2Fjbc.275.11.7942&rfr_id=info:sid/en.wikipedia.org:Monovalent cation:proton antiporter-1" class="Z3988">
  5. ^ Wells KM, Rao R (February 2001). "The yeast Na /H exchanger Nhx1 is an N-linked glycoprotein. Topological implications". The Journal of Biological Chemistry. 276 (5): 3401–7. doi:10.1074/jbc.M001688200. PMID 11036065.3401-7&rft.date=2001-02&rft_id=info:doi/10.1074/jbc.M001688200&rft_id=info:pmid/11036065&rft.aulast=Wells&rft.aufirst=KM&rft.au=Rao, R&rft_id=https://doi.org/10.1074%2Fjbc.M001688200&rfr_id=info:sid/en.wikipedia.org:Monovalent cation:proton antiporter-1" class="Z3988">
  6. ^ "2.A.36 The Monovalent Cation:Proton Antiporter-1 (CPA1) Family". Transporter Classification Database. Retrieved 2016-03-16.

Further reading

edit
  • An R, Chen QJ, Chai MF, Lu PL, Su Z, Qin ZX, Chen J, Wang XC (February 2007). "AtNHX8, a member of the monovalent cation: proton antiporter-1 family in Arabidopsis thaliana, encodes a putative Li/H antiporter". The Plant Journal. 49 (4): 718–28. doi:10.1111/j.1365-313X.2006.02990.x. PMID 17270011.718-28&rft.date=2007-02&rft_id=info:doi/10.1111/j.1365-313X.2006.02990.x&rft_id=info:pmid/17270011&rft.aulast=An&rft.aufirst=R&rft.au=Chen, QJ&rft.au=Chai, MF&rft.au=Lu, PL&rft.au=Su, Z&rft.au=Qin, ZX&rft.au=Chen, J&rft.au=Wang, XC&rft_id=https://doi.org/10.1111%2Fj.1365-313X.2006.02990.x&rfr_id=info:sid/en.wikipedia.org:Monovalent cation:proton antiporter-1" class="Z3988">
  • Apse MP, Aharon GS, Snedden WA, Blumwald E (August 1999). "Salt tolerance conferred by overexpression of a vacuolar Na /H antiport in Arabidopsis". Science. 285 (5431): 1256–8. doi:10.1126/science.285.5431.1256. PMID 10455050.1256-8&rft.date=1999-08&rft_id=info:doi/10.1126/science.285.5431.1256&rft_id=info:pmid/10455050&rft.aulast=Apse&rft.aufirst=MP&rft.au=Aharon, GS&rft.au=Snedden, WA&rft.au=Blumwald, E&rfr_id=info:sid/en.wikipedia.org:Monovalent cation:proton antiporter-1" class="Z3988">
  • Britto DT, Kronzucker HJ (August 2015). "Sodium efflux in plant roots: what do we really know?". Journal of Plant Physiology. 186–187: 1–12. doi:10.1016/j.jplph.2015.08.002. PMID 26318642.1-12&rft.date=2015-08&rft_id=info:doi/10.1016/j.jplph.2015.08.002&rft_id=info:pmid/26318642&rft.aulast=Britto&rft.aufirst=DT&rft.au=Kronzucker, HJ&rfr_id=info:sid/en.wikipedia.org:Monovalent cation:proton antiporter-1" class="Z3988">
  • Counillon L, Pouysségur J (January 2000). "The expanding family of eucaryotic Na( )/H( ) exchangers". The Journal of Biological Chemistry. 275 (1): 1–4. doi:10.1074/jbc.275.1.1. PMID 10617577.1-4&rft.date=2000-01&rft_id=info:doi/10.1074/jbc.275.1.1&rft_id=info:pmid/10617577&rft.aulast=Counillon&rft.aufirst=L&rft.au=Pouysségur, J&rft_id=https://doi.org/10.1074%2Fjbc.275.1.1&rfr_id=info:sid/en.wikipedia.org:Monovalent cation:proton antiporter-1" class="Z3988">
  • Krauke Y, Sychrova H (May 2008). "Functional comparison of plasma-membrane Na /H antiporters from two pathogenic Candida species". BMC Microbiology. 8: 80. doi:10.1186/1471-2180-8-80. PMC 2424070. PMID 18492255.
  • Ohgaki R, van IJzendoorn SC, Matsushita M, Hoekstra D, Kanazawa H (February 2011). "Organellar Na /H exchangers: novel players in organelle pH regulation and their emerging functions". Biochemistry. 50 (4): 443–50. doi:10.1021/bi101082e. PMID 21171650.443-50&rft.date=2011-02&rft_id=info:doi/10.1021/bi101082e&rft_id=info:pmid/21171650&rft.aulast=Ohgaki&rft.aufirst=R&rft.au=van IJzendoorn, SC&rft.au=Matsushita, M&rft.au=Hoekstra, D&rft.au=Kanazawa, H&rfr_id=info:sid/en.wikipedia.org:Monovalent cation:proton antiporter-1" class="Z3988">
  • Parker MD, Myers EJ, Schelling JR (June 2015). "Na -H exchanger-1 (NHE1) regulation in kidney proximal tubule". Cellular and Molecular Life Sciences. 72 (11): 2061–74. doi:10.1007/s00018-015-1848-8. PMC 4993044. PMID 25680790.2061-74&rft.date=2015-06&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4993044#id-name=PMC&rft_id=info:pmid/25680790&rft_id=info:doi/10.1007/s00018-015-1848-8&rft.aulast=Parker&rft.aufirst=MD&rft.au=Myers, EJ&rft.au=Schelling, JR&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4993044&rfr_id=info:sid/en.wikipedia.org:Monovalent cation:proton antiporter-1" class="Z3988">
  • Sangan P, Rajendran VM, Geibel JP, Binder HJ (March 2002). "Cloning and expression of a chloride-dependent Na -H exchanger". The Journal of Biological Chemistry. 277 (12): 9668–75. doi:10.1074/jbc.M110852200. PMID 11773056.9668-75&rft.date=2002-03&rft_id=info:doi/10.1074/jbc.M110852200&rft_id=info:pmid/11773056&rft.aulast=Sangan&rft.aufirst=P&rft.au=Rajendran, VM&rft.au=Geibel, JP&rft.au=Binder, HJ&rft_id=https://doi.org/10.1074%2Fjbc.M110852200&rfr_id=info:sid/en.wikipedia.org:Monovalent cation:proton antiporter-1" class="Z3988">
  • Waditee R, Hibino T, Nakamura T, Incharoensakdi A, Takabe T (March 2002). "Overexpression of a Na /H antiporter confers salt tolerance on a freshwater cyanobacterium, making it capable of growth in sea water". Proceedings of the National Academy of Sciences of the United States of America. 99 (6): 4109–14. Bibcode:2002PNAS...99.4109W. doi:10.1073/pnas.052576899. PMC 122656. PMID 11891307.4109-14&rft.date=2002-03&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC122656#id-name=PMC&rft_id=info:pmid/11891307&rft_id=info:doi/10.1073/pnas.052576899&rft_id=info:bibcode/2002PNAS...99.4109W&rft.aulast=Waditee&rft.aufirst=R&rft.au=Hibino, T&rft.au=Nakamura, T&rft.au=Incharoensakdi, A&rft.au=Takabe, T&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC122656&rfr_id=info:sid/en.wikipedia.org:Monovalent cation:proton antiporter-1" class="Z3988">
  • Wakabayashi S, Hisamitsu T, Nakamura TY (August 2013). "Regulation of the cardiac Na⁺/H⁺ exchanger in health and disease". Journal of Molecular and Cellular Cardiology. 61: 68–76. doi:10.1016/j.yjmcc.2013.02.007. PMID 23429007.68-76&rft.date=2013-08&rft_id=info:doi/10.1016/j.yjmcc.2013.02.007&rft_id=info:pmid/23429007&rft.aulast=Wakabayashi&rft.aufirst=S&rft.au=Hisamitsu, T&rft.au=Nakamura, TY&rfr_id=info:sid/en.wikipedia.org:Monovalent cation:proton antiporter-1" class="Z3988">

As of this edit, this article uses content from "2.A.36 The Monovalent Cation:Proton Antiporter-1 (CPA1) Family", which is licensed in a way that permits reuse under the Creative Commons Attribution-ShareAlike 3.0 Unported License, but not under the GFDL. All relevant terms must be followed.