Mitomycins

(Redirected from Mitomycin)

The mitomycins are a family of aziridine-containing natural products isolated from Streptomyces caespitosus or Streptomyces lavendulae.[1][2] They include mitomycin A, mitomycin B, and mitomycin C. When the name mitomycin occurs alone, it usually refers to mitomycin C, its international nonproprietary name. Mitomycin C is used as a medicine for treating various disorders associated with the growth and spread of cells.

Chemical structure of mitomycin C

Biosynthesis

edit

In general, the biosynthesis of all mitomycins proceeds via combination of 3-amino-5-hydroxybenzoic acid (AHBA), D-glucosamine, and carbamoyl phosphate, to form the mitosane core, followed by specific tailoring steps.[3] The key intermediate, AHBA, is a common precursor to other anticancer drugs, such as rifamycin and ansamycin.

Specifically, the biosynthesis begins with the addition of phosphoenolpyruvate (PEP) to erythrose-4-phosphate (E4P) with a yet undiscovered enzyme, which is then ammoniated to give 4-amino-3-deoxy-D-arabino heptulosonic acid-7-phosphate (aminoDHAP). Next, DHQ synthase catalyzes a ring closure to give 4-amino3-dehydroquinate (aminoDHQ), which then undergoes a double oxidation via aminoDHQ dehydratase to give 4-amino-dehydroshikimate (aminoDHS). The key intermediate, 3-amino-5-hydroxybenzoic acid (AHBA), is made via aromatization by AHBA synthase.

 

Synthesis of the key intermediate, 3-amino-5-hydroxy-benzoic acid.

The mitosane core is synthesized as shown below via condensation of AHBA and D-glucosamine, although no specific enzyme has been characterized that mediates this transformation. Once this condensation has occurred, the mitosane core is tailored by a variety of enzymes. Both the sequence and the identity of these steps are yet to be determined.

  • Complete reduction of C-6 – Likely via F420-dependent tetrahydromethanopterin (H4MPT) reductase and H4MPT:CoM methyltransferase
  • Hydroxylation of C-5, C-7 (followed by transamination), and C-9a. – Likely via cytochrome P450 monooxygenase or benzoate hydroxylase
  • O-Methylation at C-9a – Likely via SAM dependent methyltransferase
  • Oxidation at C-5 and C8 – Unknown
  • Intramolecular amination to form aziridine – Unknown
  • Carbamoylation at C-10 – Carbamoyl transferase, with carbamoyl phosphate (C4P) being derived from L-citrulline or L-arginine

 

Biological effects

edit

In the bacterium Legionella pneumophila, mitomycin C induces competence for transformation.[4] Natural transformation is a process of DNA transfer between cells, and is regarded as a form of bacterial sexual interaction. In the fruit fly Drosophila melanogaster, exposure to mitomycin C increases recombination during meiosis, a key stage of the sexual cycle.[5] In the plant Arabidopsis thaliana, mutant strains defective in genes necessary for recombination during meiosis and mitosis are hypersensitive to killing by mitomycin C.[6]

Medicinal uses and research

edit

Mitomycin C has been shown to have activity against stationary phase persisters caused by Borrelia burgdorferi, a factor in lyme disease.[7][8] Mitomycin C is used to treat pancreatic and stomach cancer,[9] and is under clinical research for its potential to treat gastrointestinal strictures,[10] wound healing from glaucoma surgery,[11] corneal excimer laser surgery[12] and endoscopic dacryocystorhinostomy.[13]

References

edit
  1. ^ Clokie MR, Kropinski AM (2009). Bacteriophages : methods and protocols. Humana Press. ISBN 9781603271646. OCLC 297169927.
  2. ^ Danshiitsoodol N, de Pinho CA, Matoba Y, Kumagai T, Sugiyama M (July 2006). "The mitomycin C (MMC)-binding protein from MMC-producing microorganisms protects from the lethal effect of bleomycin: crystallographic analysis to elucidate the binding mode of the antibiotic to the protein". Journal of Molecular Biology. 360 (2): 398–408. doi:10.1016/j.jmb.2006.05.017. PMID 16756991.398-408&rft.date=2006-07&rft_id=info:doi/10.1016/j.jmb.2006.05.017&rft_id=info:pmid/16756991&rft.aulast=Danshiitsoodol&rft.aufirst=N&rft.au=de Pinho, CA&rft.au=Matoba, Y&rft.au=Kumagai, T&rft.au=Sugiyama, M&rfr_id=info:sid/en.wikipedia.org:Mitomycins" class="Z3988">
  3. ^ Mao Y, Varoglu M, Sherman DH (April 1999). "Molecular characterization and analysis of the biosynthetic gene cluster for the antitumor antibiotic mitomycin C from Streptomyces lavendulae NRRL 2564". Chemistry & Biology. 6 (4): 251–263. doi:10.1016/S1074-5521(99)80040-4. PMID 10099135.251-263&rft.date=1999-04&rft_id=info:doi/10.1016/S1074-5521(99)80040-4&rft_id=info:pmid/10099135&rft.aulast=Mao&rft.aufirst=Y&rft.au=Varoglu, M&rft.au=Sherman, DH&rft_id=https://doi.org/10.1016%2FS1074-5521%2899%2980040-4&rfr_id=info:sid/en.wikipedia.org:Mitomycins" class="Z3988">
  4. ^ Charpentier X, Kay E, Schneider D, Shuman HA (March 2011). "Antibiotics and UV radiation induce competence for natural transformation in Legionella pneumophila". Journal of Bacteriology. 193 (5): 1114–1121. doi:10.1128/JB.01146-10. PMC 3067580. PMID 21169481.1114-1121&rft.date=2011-03&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3067580#id-name=PMC&rft_id=info:pmid/21169481&rft_id=info:doi/10.1128/JB.01146-10&rft.aulast=Charpentier&rft.aufirst=X&rft.au=Kay, E&rft.au=Schneider, D&rft.au=Shuman, HA&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3067580&rfr_id=info:sid/en.wikipedia.org:Mitomycins" class="Z3988">
  5. ^ Schewe MJ, Suzuki DT, Erasmus U (July 1971). "The genetic effects of mitomycin C in Drosophila melanogaster. II. Induced meiotic recombination". Mutation Research. 12 (3): 269–279. doi:10.1016/0027-5107(71)90015-7. PMID 5563942.269-279&rft.date=1971-07&rft_id=info:doi/10.1016/0027-5107(71)90015-7&rft_id=info:pmid/5563942&rft.aulast=Schewe&rft.aufirst=MJ&rft.au=Suzuki, DT&rft.au=Erasmus, U&rfr_id=info:sid/en.wikipedia.org:Mitomycins" class="Z3988">
  6. ^ Bleuyard JY, Gallego ME, Savigny F, White CI (February 2005). "Differing requirements for the Arabidopsis Rad51 paralogs in meiosis and DNA repair". The Plant Journal. 41 (4): 533–545. doi:10.1111/j.1365-313X.2004.02318.x. PMID 15686518.533-545&rft.date=2005-02&rft_id=info:doi/10.1111/j.1365-313X.2004.02318.x&rft_id=info:pmid/15686518&rft.aulast=Bleuyard&rft.aufirst=JY&rft.au=Gallego, ME&rft.au=Savigny, F&rft.au=White, CI&rfr_id=info:sid/en.wikipedia.org:Mitomycins" class="Z3988">
  7. ^ Feng J, Shi W, Zhang S, Zhang Y (June 2015). "Identification of new compounds with high activity against stationary phase Borrelia burgdorferi from the NCI compound collection". Emerging Microbes & Infections. 4 (6): e31. doi:10.1038/emi.2015.31. PMC 5176177. PMID 26954881.
  8. ^ Sharma B, Brown AV, Matluck NE, Hu LT, Lewis K (August 2015). "Borrelia burgdorferi, the Causative Agent of Lyme Disease, Forms Drug-Tolerant Persister Cells". Antimicrobial Agents and Chemotherapy. 59 (8): 4616–4624. doi:10.1128/AAC.00864-15. PMC 4505243. PMID 26014929.4616-4624&rft.date=2015-08&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4505243#id-name=PMC&rft_id=info:pmid/26014929&rft_id=info:doi/10.1128/AAC.00864-15&rft.aulast=Sharma&rft.aufirst=B&rft.au=Brown, AV&rft.au=Matluck, NE&rft.au=Hu, LT&rft.au=Lewis, K&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4505243&rfr_id=info:sid/en.wikipedia.org:Mitomycins" class="Z3988">
  9. ^ "Mitomycin". Drugs.com. 2017. Retrieved 11 November 2017.
  10. ^ Rustagi T, Aslanian HR, Laine L (2015). "Treatment of Refractory Gastrointestinal Strictures With Mitomycin C: A Systematic Review". Journal of Clinical Gastroenterology. 49 (10): 837–847. doi:10.1097/MCG.0000000000000295. PMID 25626632. S2CID 5867992.837-847&rft.date=2015&rft_id=https://api.semanticscholar.org/CorpusID:5867992#id-name=S2CID&rft_id=info:pmid/25626632&rft_id=info:doi/10.1097/MCG.0000000000000295&rft.aulast=Rustagi&rft.aufirst=T&rft.au=Aslanian, HR&rft.au=Laine, L&rfr_id=info:sid/en.wikipedia.org:Mitomycins" class="Z3988">
  11. ^ Cabourne E, Clarke JC, Schlottmann PG, Evans JR (November 2015). "Mitomycin C versus 5-Fluorouracil for wound healing in glaucoma surgery". The Cochrane Database of Systematic Reviews. 2015 (11): CD006259. doi:10.1002/14651858.CD006259.pub2. PMC 8763343. PMID 26545176.
  12. ^ Majmudar PA, Forstot SL, Dennis RF, Nirankari VS, Damiano RE, Brenart R, Epstein RJ (January 2000). "Topical mitomycin-C for subepithelial fibrosis after refractive corneal surgery". Ophthalmology. 107 (1): 89–94. doi:10.1016/s0161-6420(99)00019-6. PMID 10647725.89-94&rft.date=2000-01&rft_id=info:doi/10.1016/s0161-6420(99)50019-6&rft_id=info:pmid/10647725&rft.aulast=Majmudar&rft.aufirst=PA&rft.au=Forstot, SL&rft.au=Dennis, RF&rft.au=Nirankari, VS&rft.au=Damiano, RE&rft.au=Brenart, R&rft.au=Epstein, RJ&rfr_id=info:sid/en.wikipedia.org:Mitomycins" class="Z3988">
  13. ^ Cheng SM, Feng YF, Xu L, Li Y, Huang JH (2013). "Efficacy of mitomycin C in endoscopic dacryocystorhinostomy: a systematic review and meta-analysis". PLOS ONE. 8 (5): e62737. Bibcode:2013PLoSO...862737C. doi:10.1371/journal.pone.0062737. PMC 3652813. PMID 23675423.