An equivalent (symbol: officially equiv;[1] unofficially but often Eq[2]) is the amount of a substance that reacts with (or is equivalent to) an arbitrary amount (typically one mole) of another substance in a given chemical reaction. It is an archaic quantity that was used in chemistry and the biological sciences (see Equivalent weight § In history). The mass of an equivalent is called its equivalent weight.
Formula
editThe formula from milligrams (mg) to milli-equivalent (mEq) and back is as follows: where V is the valence and MW is the molecular weight.
For elemental compounds:
Common examples
editmEq to milligram
editCompound | Chemical formula | Molecular weight (MW) | Valencies (V) | Sample | ||
---|---|---|---|---|---|---|
Reference | Elemental mEq | Elemental mEq to compound weight | ||||
Potassium (reference) | K | 39.098 g/mol | 1 (K ) | 20 mEq potassium | 20*39.098/1=782 mg | |
Potassium citrate monohydrate | C6H7K3O8 | 324.41 g/mol | 3 (K ) | Liquid potassium citrate/gluconate therapy for adults and teenagers taken two to four times a day[3] | 20 mEq potassium | 20*324/3=2160 mg |
Potassium gluconate (anhydrous) | C6H11KO7 | 234.245 g/mol | 1 (K ) | Liquid potassium citrate/gluconate therapy for adults and teenagers taken two to four times a day[3] | 20 mEq potassium | 20*234.245/1=4685 mg |
Milligram to mEq
editCompound | Chemical formula | Molecular weight (MW) | Elemental mass fraction | Valencies (V) | Sample | ||
---|---|---|---|---|---|---|---|
Reference | Weight | Compound weight to elemental mEq | |||||
Potassium (reference) | K | 39.098 g/mol | 100% | 1 (K ) | 3000 mg | 3000*1/39.098=77 mEq K | |
Potassium citrate monohydrate | C6H7K3O8 | 324.41 g/mol | 36.16% | 3 (K ) | Tolerable DRI for potassium dietary supplements[4][5] | 8.3 g (3000/0.3616) | 8296*3/324.41=77 mEq K |
Potassium gluconate (anhydrous) | C6H11KO7 | 234.245 g/mol | 16.69% | 1 (K ) | Tolerable DRI for potassium dietary supplements[4][5] | 18 g (3000/0.1669) | 17975*1/234.245=77 mEq K |
Formal definition
editIn a more formal definition, the equivalent is the amount of a substance needed to do one of the following:
- react with or supply one mole of hydrogen ions (H ) in an acid–base reaction
- react with or supply one mole of electrons in a redox reaction.[6][7]
The "hydrogen ion" and the "electron" in these examples are respectively called the "reaction units."
By this definition, the number of equivalents of a given ion in a solution is equal to the number of moles of that ion multiplied by its valence. For example, consider a solution of 1 mole of NaCl and 1 mole of CaCl2. The solution has 1 mole or 1 equiv Na , 1 mole or 2 equiv Ca2 , and 3 mole or 3 equiv Cl−.
An earlier definition, used especially for chemical elements, holds that an equivalent is the amount of a substance that will react with 1 g (0.035 oz) of hydrogen, 8 g (0.28 oz) of oxygen, or 35.5 g (1.25 oz) of chlorine—or that will displace any of the three.[8]
In medicine and biochemistry
editIn biological systems, reactions often happen on small scales, involving small amounts of substances, so those substances are routinely described in terms of milliequivalents (symbol: officially mequiv; unofficially but often mEq[2] or meq), the prefix milli- denoting a factor of one thousandth (10−3). Very often, the measure is used in terms of milliequivalents of solute per litre of solution (or milliNormal, where meq/L = mN). This is especially common for measurement of compounds in biological fluids; for instance, the healthy level of potassium in the blood of a human is defined between 3.5 and 5.0 mEq/L.
A certain amount of univalent ions provides the same amount of equivalents while the same amount of divalent ions provides twice the amount of equivalents. For example, 1 mmol (0.001 mol) of Na is equal to 1 meq, while 1 mmol of Ca2 is equal to 2 meq.
References
edit- ^ "CAS Standard Abbreviations & Acronyms". www.cas.org. Retrieved 2017-07-26.
- ^ a b American Medical Association, "14.12: Units of Measure", AMA Manual of Style, retrieved 2019-10-23.
- ^ a b "Potassium Supplement (Oral Route, Parenteral Route) Proper Use - Mayo Clinic". www.mayoclinic.org.
- ^ a b "Potassium - assessment of suggestd maximum limits in food supplements". VKM Report. 16 December 2016.
- ^ a b "Proposed maximum levels for the addition of potassium to foods including food supplements" (PDF). German Federal Institute for Risk Assessment. Archived (PDF) from the original on 2022-12-12.
- ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "equivalent entity". doi:10.1351/goldbook.E02192
- ^ International Union of Pure and Applied Chemistry (1998). Compendium of Analytical Nomenclature (definitive rules 1997, 3rd. ed.). Oxford: Blackwell Science. ISBN 0-86542-6155. section 6.3. "Chapter 6 - 3: The use of the equivalence concept" (PDF). Archived from the original (PDF) on July 26, 2011. Retrieved 2009-05-10.
- ^ "Atome", Grand dictionnaire universel du XIXe siècle (in French), vol. 1, Paris: Pierre Larousse, 1866, pp. 868–73868-73&rft.pub=Pierre Larousse&rft.date=1866&rfr_id=info:sid/en.wikipedia.org:Equivalent (chemistry)" class="Z3988">
External links
edit- A dictionary of units of measurement Archived 2018-10-06 at the Wayback Machine