Method of moments (electromagnetics)

The method of moments (MoM), also known as the moment method and method of weighted residuals,[1] is a numerical method in computational electromagnetics. It is used in computer programs that simulate the interaction of electromagnetic fields such as radio waves with matter, for example antenna simulation programs like NEC that calculate the radiation pattern of an antenna. Generally being a frequency-domain method,[a] it involves the projection of an integral equation into a system of linear equations by the application of appropriate boundary conditions. This is done by using discrete meshes as in finite difference and finite element methods, often for the surface. The solutions are represented with the linear combination of pre-defined basis functions; generally, the coefficients of these basis functions are the sought unknowns. Green's functions and Galerkin method play a central role in the method of moments.

Simulation of negative refraction from a metasurface at 15 GHz for different angles of incidence. The simulations are performed through the method of moments.

For many applications, the method of moments is identical to the boundary element method.[b] It is one of the most common methods in microwave and antenna engineering.

History

edit

Development of boundary element method and other similar methods for different engineering applications is associated with the advent of digital computing in the 1960s.[6] Prior to this, variational methods were applied to engineering problems at microwave frequencies by the time of World War II.[7] While Julian Schwinger and Nathan Marcuvitz have respectively compiled these works into lecture notes and textbooks,[8][9] Victor Rumsey has formulated these methods into the "reaction concept" in 1954.[10] The concept was later shown to be equivalent to the Galerkin method.[7] In the late 1950s, an early version of the method of moments was introduced by Yuen Lo at a course on mathematical methods in electromagnetic theory at University of Illinois.[11]

 
A scheme and radiation pattern of a log-spiral antenna, designed with a NEC-based modeling software

In the 1960s, early research work on the method was published by Kenneth Mei, Jean van Bladel[12] and Jack Richmond.[13] In the same decade, the systematic theory for the method of moments in electromagnetics was largely formalized by Roger Harrington.[14] While the term "the method of moments" was coined earlier by Leonid Kantorovich and Gleb Akilov for analogous numerical applications,[15] Harrington has adapted the term for the electromagnetic formulation.[7] Harrington published the seminal textbook Field Computation by Moment Methods on the moment method in 1968.[14] The development of the method and its indications in radar and antenna engineering attracted interest; MoM research was subsequently supported United States government. The method was further popularized by the introduction of generalized antenna modeling codes such as Numerical Electromagnetics Code, which was released into public domain by the United States government in the late 1980s.[16][17] In the 1990s, introduction of fast multipole and multilevel fast multipole methods enabled efficient MoM solutions to problems with millions of unknowns.[18][19][20]

Being one of the most common simulation techniques in RF and microwave engineering, the method of moments forms the basis of many commercial design software such as FEKO.[21] Many non-commercial and public domain codes of different sophistications are also available.[22] In addition to its use in electrical engineering, the method of moments has been applied to light scattering[23] and plasmonic problems.[24][25][26]

Background

edit

Basic concepts

edit

An inhomogeneous integral equation can be expressed as:   where L denotes a linear operator, g denotes the known forcing function and f denotes the unknown function. f can be approximated by a finite number of basis functions ( ):  

By linearity, substitution of this expression into the equation yields:  

We can also define a residual for this expression, which denotes the difference between the actual and the approximate solution:  

The aim of the method of moments is to minimize this residual, which can be done by using appropriate weighting or testing functions, hence the name method of weighted residuals.[27] After the determination of a suitable inner product for the problem, the expression then becomes:  

Thus, the expression can be represented in the matrix form:  

The resulting matrix is often referred as the impedance matrix.[28] The coefficients of the basis functions can be obtained through inverting the matrix.[29] For large matrices with a large number of unknowns, iterative methods such as conjugate gradient method can be used for acceleration.[30] The actual field distributions can be obtained from the coefficients and the associated integrals.[31] The interactions between each basis function in MoM is ensured by Green's function of the system.[32]

Basis and testing functions

edit
 
Interpolation of function with rooftop basis functions

Different basis functions can be chosen to model the expected behavior of the unknown function in the domain; these functions can either be subsectional or global.[33] Choice of Dirac delta function as basis function is known as point-matching or collocation. This corresponds to enforcing the boundary conditions on   discrete points and is often used to obtain approximate solutions when the inner product operation is cumbersome to perform.[34][35] Other subsectional basis functions include pulse, piecewise triangular, piecewise sinusoidal and rooftop functions.[33] Triangular patches, introduced by S. Rao, D. Wilton and A. Glisson in 1982,[36] are known as RWG basis functions and are widely used in MoM.[37] Characteristic basis functions were also introduced to accelerate computation and reduce the matrix equation.[38][39]

The testing and basis functions are often chosen to be the same; this is known as the Galerkin method.[29] Depending on the application and studied structure, the testing and basis functions should be chosen appropriately to ensure convergence and accuracy, as well as to prevent possible high order algebraic singularities.[40]

Integral equations

edit

Depending on the application and sought variables, different integral or integro-differential equations are used in MoM. Radiation and scattering by thin wire structures, such as many types of antennas, can be modeled by specialized equations.[41] For surface problems, common integral equation formulations include electric field integral equation (EFIE), magnetic field integral equation (MFIE)[42] and mixed-potential integral equation (MPIE).[43]

Thin-wire equations

edit

As many antenna structures can be approximated as wires, thin wire equations are of interest in MoM applications. Two commonly used thin-wire equations are Pocklington and Hallén integro-differential equations.[44] Pocklington's equation precedes the computational techniques, having been introduced in 1897 by Henry Cabourn Pocklington.[45] For a linear wire that is centered on the origin and aligned with the z-axis, the equation can be written as:   where   and   denote the total length and thickness, respectively.   is the Green's function for free space. The equation can be generalized to different excitation schemes, including magnetic frills.[46]

Hallén integral equation, published by E. Hallén in 1938,[47] can be given as:  

This equation, despite being more well-behaved than the Pocklington's equation,[48] is generally restricted to the delta-gap voltage excitations at the antenna feed point, which can be represented as an impressed electric field.[46]

Electric field integral equation (EFIE)

edit

The general form of electric field integral equation (EFIE) can be written as:   where   is the incident or impressed electric field.   is the Green function for Helmholtz equation and   represents the wave impedance. The boundary conditions are met at a defined PEC surface. EFIE is a Fredholm integral equation of the first kind.[42]

Magnetic field integral equation (MFIE)

edit

Another commonly used integral equation in MoM is the magnetic field integral equation (MFIE), which can be written as:  

MFIE is often formulated to be a Fredholm integral equation of the second kind and is generally well-posed. Nevertheless, the formulation necessitates the use of closed surfaces, which limits its applications.[42]

Other formulations

edit

Many different surface and volume integral formulations for MoM exist. In many cases, EFIEs are converted to mixed potential integral equations (MFIE) through the use of Lorenz gauge condition; this aims to reduce the orders of singularities through the use of magnetic vector and scalar electric potentials.[49][50] In order to bypass the internal resonance problem in dielectric scattering calculations, combined-field integral equation (CFIE) and Poggio—Miller—Chang—Harrington—Wu—Tsai (PMCHWT) formulations are also used.[51] Another approach, the volumetric integral equation, necessitates the discretization of the volume elements and is often computationally expensive.[52]

MoM can also be integrated with physical optics theory[53] and finite element method.[54]

Green's functions

edit
 
A microstrip scheme. MoM analysis of such layered structures necessitates the derivation of appropriate Green's functions.

Appropriate Green's function for the studied structure must be known to formulate MoM matrices: automatic incorporation of the radiation condition into the Green's function makes MoM particularly useful for radiation and scattering problems. Even though the Green function can be derived in closed form for very simple cases, more complex structures necessitate numerical derivation of these functions.[55]

Full wave analysis of planarly-stratified structures in particular, such as microstrips or patch antennas, necessitate the derivation of Green's functions that are peculiar to these geometries.[50][56] This can be achieved in two different methods. In the first method, known as spectral-domain approach, the inner products and convolution operation for MoM matrix entries are evaluated in the Fourier space with analytically-derived spectral-domain Green's functions through Parseval's theorem.[57][58][59] The other approach is based on the use of spatial-domain Green's functions. This involves the inverse Hankel transform of the spectral-domain Green's function, which is defined on the Sommerfeld integration path. Nevertheless, this integral cannot be evaluated analytically, and its numerical evaluation is often computationally expensive due to the oscillatory kernels and slowly-converging nature of the integral.[60] Common approaches for evaluating these integrals include tail extrapolation approaches such as weighted-averages method.[61]

Other approaches include the approximation of the integral kernel. Following the extraction of quasi-static and surface pole components, these integrals can be approximated as closed-form complex exponentials through Prony's method or generalized pencil-of-function method; thus, the spatial Green's functions can be derived through the use of appropriate identities such as Sommerfeld identity.[62][63][64] This method is known in the computational electromagnetics literature as the discrete complex image method (DCIM), since the Green's function is effectively approximated with a discrete number of image dipoles that are located within a complex distance from the origin.[65] The associated Green's functions are referred as closed-form Green's functions.[63][64] The method has also been extended for cylindrically-layered structures.[66]

Rational-function fitting method,[67][68] as well as its combinations with DCIM,[64] can also be used to approximate closed-form Green's functions. Alternatively, the closed-form Green's function can be evaluated through method of steepest descent.[69] For the periodic structures such as phased arrays and frequency selective surfaces, series acceleration methods such as Kummer's transformation and Ewald summation is often used to accelerate the computation of the periodic Green's function.[70][71]

See also

edit

Notes

edit
  1. ^ While the method is commonly formulated in frequency domain, time domain formulations (MoM-TD) have been reported in the literature.[2][3][4]
  2. ^ For surface-integral formulations, the method of moments and boundary element method are synonymous: the name "method of moments" is particularly used by the electromagnetics community. Nevertheless, certain volumetric formulations are also present in MoM.[5]

References

edit
  1. ^ Davidson 2005, p. 7.
  2. ^ Orlandi, A. (May 1996). "Lightning induced transient voltages in presence of complex structures and nonlinear loads". IEEE Transactions on Electromagnetic Compatibility. 38 (2): 150–155. doi:10.1109/15.494617.150-155&rft.date=1996-05&rft_id=info:doi/10.1109/15.494617&rft.aulast=Orlandi&rft.aufirst=A.&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  3. ^ Bretones, A.R.; Mittra, R.; Martin, R. G. (August 1998). "A hybrid technique combining the method of moments in the time domain and FDTD". IEEE Microwave and Guided Wave Letters. 8 (8): 281–283. doi:10.1109/75.704414.281-283&rft.date=1998-08&rft_id=info:doi/10.1109/75.704414&rft.aulast=Bretones&rft.aufirst=A.R.&rft.au=Mittra, R.&rft.au=Martin, R. G.&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  4. ^ Firouzeh, Z. H.; Moini, R.; Sadeghi, S. H. H.; et al. (April 2011). "A new robust technique for transient analysis of conducting cylinders – TM case". Proceedings of the 5th European Conference on Antennas and Propagation.
  5. ^ Davidson 2005, pp. 7, 197–200.
  6. ^ -D. Cheng, Alexander H.; Cheng, Daisy T. (March 2005). "Heritage and early history of the boundary element method". Engineering Analysis with Boundary Elements. 29 (3): 268–302. doi:10.1016/j.enganabound.2004.12.001.268-302&rft.date=2005-03&rft_id=info:doi/10.1016/j.enganabound.2004.12.001&rft.aulast=-D. Cheng&rft.aufirst=Alexander H.&rft.au=Cheng, Daisy T.&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  7. ^ a b c Harrington, R. (June 1990). "Origin and development of the method of moments for field computation". IEEE Antennas and Propagation Magazine. 32 (3): 31–35. Bibcode:1990IAPM...32...31H. doi:10.1109/74.80522. S2CID 46584485.31-35&rft.date=1990-06&rft_id=https://api.semanticscholar.org/CorpusID:46584485#id-name=S2CID&rft_id=info:doi/10.1109/74.80522&rft_id=info:bibcode/1990IAPM...32...31H&rft.aulast=Harrington&rft.aufirst=R.&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  8. ^ Saxon, David S. (1945). Notes on Lectures by Julian Schwinger: Discontinuities in Waveguides. Massachusetts Institute of Technology.
  9. ^ Marcuvitz, Nathan (1951). Waveguide Handbook. McGraw-Hill. ISBN 978-0863410581.
  10. ^ Rumsey, V. H. (June 1954). "Reaction Concept in Electromagnetic Theory". Physical Review. 94 (6): 1483. Bibcode:1954PhRv...94.1483R. doi:10.1103/PhysRev.94.1483.
  11. ^ Chew, Weng Cho; Chuang, Shun-Lien; Jin, Jian-Ming; et al. (August 2002). "In memoriam: Yuen-Tze Lo". IEEE Antennas and Propagation Magazine. 44 (4): 82–83. Bibcode:2002IAPM...44...82.. doi:10.1109/MAP.2002.1043152.82-83&rft.date=2002-08&rft_id=info:doi/10.1109/MAP.2002.1043152&rft_id=info:bibcode/2002IAPM...44...82.&rft.aulast=Chew&rft.aufirst=Weng Cho&rft.au=Chuang, Shun-Lien&rft.au=Jin, Jian-Ming&rft.au=Lee, Shung-Wu&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  12. ^ Mei, K.; Van Bladel, J. (March 1963). "Scattering by perfectly-conducting rectangular cylinders". IEEE Transactions on Antennas and Propagation. 11 (2): 185–192. Bibcode:1963ITAP...11..185M. doi:10.1109/TAP.1963.1137996.185-192&rft.date=1963-03&rft_id=info:doi/10.1109/TAP.1963.1137996&rft_id=info:bibcode/1963ITAP...11..185M&rft.aulast=Mei&rft.aufirst=K.&rft.au=Van Bladel, J.&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  13. ^ Richmond, J. H. (August 1965). "Digital computer solutions of the rigorous equations for scattering problems". Proceedings of the IEEE. 53 (8): 796–804. doi:10.1109/PROC.1965.4057.796-804&rft.date=1965-08&rft_id=info:doi/10.1109/PROC.1965.4057&rft.aulast=Richmond&rft.aufirst=J. H.&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  14. ^ a b Wilton, Donald R.; Arvas, Ercument; Butler, Chalmers M.; Mautz, Joseph R. (19 October 2017). "Roger F. Harrington, 1989 IEEE AP-S Distinguished Achievement awardee". 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. pp. 657–658. doi:10.1109/APUSNCURSINRSM.2017.8072371. ISBN 978-1-5386-3284-0. S2CID 1484406.657-658&rft.date=2017-10-19&rft_id=https://api.semanticscholar.org/CorpusID:1484406#id-name=S2CID&rft_id=info:doi/10.1109/APUSNCURSINRSM.2017.8072371&rft.isbn=978-1-5386-3284-0&rft.aulast=Wilton&rft.aufirst=Donald R.&rft.au=Arvas, Ercument&rft.au=Butler, Chalmers M.&rft.au=Mautz, Joseph R.&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  15. ^ Medgyesi-Mitschang, L. N.; Putnam, J. M.; Gedera, M. B. (1994). "Generalized the method of moments for three-dimensional penetrable scatterers". Journal of the Optical Society of America A. 11 (4): 1383–1398. Bibcode:1994JOSAA..11.1383M. doi:10.1364/JOSAA.11.001383.1383-1398&rft.date=1994&rft_id=info:doi/10.1364/JOSAA.11.001383&rft_id=info:bibcode/1994JOSAA..11.1383M&rft.aulast=Medgyesi-Mitschang&rft.aufirst=L. N.&rft.au=Putnam, J. M.&rft.au=Gedera, M. B.&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  16. ^ Davidson 2005, p. 8.
  17. ^ Burke, G. J.; Miller, E. K.; Poggio, A. J. (June 2004). "The Numerical Electromagnetics Code (NEC) - a brief history". IEEE Antennas and Propagation Society Symposium, 2004. pp. 2871-2874 Vol.3. doi:10.1109/APS.2004.1331976. ISBN 0-7803-8302-8. OSTI 891397. S2CID 24849672.
  18. ^ Chew et al. 2001, pp. 21–22.
  19. ^ Song, J.; Lu, Cai-Cheng; Chew, Weng Cho (October 1997). "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects". IEEE Transactions on Antennas and Propagation. 45 (10): 1488–1493. Bibcode:1997ITAP...45.1488S. doi:10.1109/8.633855.1488-1493&rft.date=1997-10&rft_id=info:doi/10.1109/8.633855&rft_id=info:bibcode/1997ITAP...45.1488S&rft.aulast=Song&rft.aufirst=J.&rft.au=Lu, Cai-Cheng&rft.au=Chew, Weng Cho&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  20. ^ Song, J. M.; Lu, C. C.; Chew, W. C.; Lee, S. W. (1998). "Fast Illinois solver code (FISC)". IEEE Antennas and Propagation Magazine. 40 (3): 27–34. doi:10.1109/74.706067.27-34&rft.date=1998&rft_id=info:doi/10.1109/74.706067&rft.aulast=Song&rft.aufirst=J. M.&rft.au=Lu, C. C.&rft.au=Chew, W. C.&rft.au=Lee, S. W.&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  21. ^ Davidson 2005, pp. 7–8.
  22. ^ Balanis 2012, p. 732.
  23. ^ Lakhtakia, Akhlesh; Mulholland, George W. (1993). "On Two Numerical Techniques for Light Scattering by Dielectric Agglomerated Structures". Journal of Research of the National Institute of Standards and Technology. 98 (6): 699–716. doi:10.6028/jres.098.046. PMC 4922401. PMID 28053494.699-716&rft.date=1993&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4922401#id-name=PMC&rft_id=info:pmid/28053494&rft_id=info:doi/10.6028/jres.098.046&rft.aulast=Lakhtakia&rft.aufirst=Akhlesh&rft.au=Mulholland, George W.&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4922401&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  24. ^ Kern, Andreas M.; Martin, Olivier J. F. (2009). "Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures". Journal of the Optical Society of America A. 26 (4): 732–740. Bibcode:2009JOSAA..26..732K. doi:10.1364/JOSAA.26.000732. PMID 19340246.732-740&rft.date=2009&rft_id=info:pmid/19340246&rft_id=info:doi/10.1364/JOSAA.26.000732&rft_id=info:bibcode/2009JOSAA..26..732K&rft.aulast=Kern&rft.aufirst=Andreas M.&rft.au=Martin, Olivier J. F.&rft_id=http://infoscience.epfl.ch/record/164808&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  25. ^ Taboada, José M.; Rivero, Javier; Obelleiro, Fernando; Araújo, Marta G.; Landesa, Luis (2011). "Method-of-moments formulation for the analysis of plasmonic nano-optical antennas". Journal of the Optical Society of America A. 28 (7): 1341–1348. Bibcode:2011JOSAA..28.1341T. doi:10.1364/JOSAA.28.001341. PMID 21734731.1341-1348&rft.date=2011&rft_id=info:pmid/21734731&rft_id=info:doi/10.1364/JOSAA.28.001341&rft_id=info:bibcode/2011JOSAA..28.1341T&rft.aulast=Taboada&rft.aufirst=José M.&rft.au=Rivero, Javier&rft.au=Obelleiro, Fernando&rft.au=Araújo, Marta G.&rft.au=Landesa, Luis&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  26. ^ Hohenester, Ulrich; Trügler, Andreas (February 2012). "MNPBEM – A Matlab toolbox for the simulation of plasmonic nanoparticles". Computer Physics Communications. 183 (2): 370–381. arXiv:1109.5783. Bibcode:2012CoPhC.183..370H. doi:10.1016/j.cpc.2011.09.009. S2CID 17489164.370-381&rft.date=2012-02&rft_id=info:arxiv/1109.5783&rft_id=https://api.semanticscholar.org/CorpusID:17489164#id-name=S2CID&rft_id=info:doi/10.1016/j.cpc.2011.09.009&rft_id=info:bibcode/2012CoPhC.183..370H&rft.aulast=Hohenester&rft.aufirst=Ulrich&rft.au=Trügler, Andreas&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  27. ^ Davidson 2005, pp. 139–140.
  28. ^ Yla-Oijala, P.; Taskinen, M. (August 2003). "Calculation of CFIE impedance matrix elements with RWG and n/spl times/RWG functions". IEEE Transactions on Antennas and Propagation. 51 (8): 1837–1846. doi:10.1109/TAP.2003.814745.1837-1846&rft.date=2003-08&rft_id=info:doi/10.1109/TAP.2003.814745&rft.aulast=Yla-Oijala&rft.aufirst=P.&rft.au=Taskinen, M.&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  29. ^ a b Harrington 1993, pp. 5–9.
  30. ^ Gibson 2021, pp. 68–77.
  31. ^ Balanis 2012, p. 679.
  32. ^ Gibson 2021, p. 18.
  33. ^ a b Gibson 2021, pp. 43–44.
  34. ^ Harrington 1993, pp. 9–10.
  35. ^ Davidson 2005, p. 123.
  36. ^ Rao, S.; Wilton, D.; Glisson, A. (May 1982). "Electromagnetic scattering by surfaces of arbitrary shape". IEEE Transactions on Antennas and Propagation . 30 (3): 409–418. Bibcode:1982ITAP...30..409R. doi:10.1109/TAP.1982.1142818.409-418&rft.date=1982-05&rft_id=info:doi/10.1109/TAP.1982.1142818&rft_id=info:bibcode/1982ITAP...30..409R&rft.aulast=Rao&rft.aufirst=S.&rft.au=Wilton, D.&rft.au=Glisson, A.&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  37. ^ Davidson 2005, pp. 186–187.
  38. ^ Prakash, V. V. S.; Mittra, Raj (2003). "Characteristic basis function method: A new technique for efficient solution of the method of moments matrix equations". Microwave and Optical Technology Letters. 36 (2): 95–100. doi:10.1002/mop.10685. S2CID 121106998.95-100&rft.date=2003&rft_id=info:doi/10.1002/mop.10685&rft_id=https://api.semanticscholar.org/CorpusID:121106998#id-name=S2CID&rft.aulast=Prakash&rft.aufirst=V. V. S.&rft.au=Mittra, Raj&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  39. ^ Maaskant, Rob; Mittra, Raj; Tijhuis, Anton (November 2008). "Fast Analysis of Large Antenna Arrays Using the Characteristic Basis Function Method and the Adaptive Cross Approximation Algorithm". IEEE Transactions on Antennas and Propagation. 56 (11): 3440–3451. Bibcode:2008ITAP...56.3440M. doi:10.1109/TAP.2008.2005471. S2CID 8654158.3440-3451&rft.date=2008-11&rft_id=https://api.semanticscholar.org/CorpusID:8654158#id-name=S2CID&rft_id=info:doi/10.1109/TAP.2008.2005471&rft_id=info:bibcode/2008ITAP...56.3440M&rft.aulast=Maaskant&rft.aufirst=Rob&rft.au=Mittra, Raj&rft.au=Tijhuis, Anton&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  40. ^ Aksun, M. I.; Mittra, R. (March 1993). "Choices of expansion and testing functions for the method of moments applied to a class of electromagnetic problems". IEEE Transactions on Microwave Theory and Techniques. 41 (3): 503–509. Bibcode:1993ITMTT..41..503A. doi:10.1109/22.223752. hdl:11693/10851.503-509&rft.date=1993-03&rft_id=info:hdl/11693/10851&rft_id=info:doi/10.1109/22.223752&rft_id=info:bibcode/1993ITMTT..41..503A&rft.aulast=Aksun&rft.aufirst=M. I.&rft.au=Mittra, R.&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  41. ^ Gibson 2021, p. 81.
  42. ^ a b c Davidson 2005, pp. 184–186.
  43. ^ Kinayman & Aksun 2005, p. 311.
  44. ^ Gibson 2021, p. 86-93.
  45. ^ Pocklington, Henry C. (October 25, 1897). "Electrical oscillations in wires". Mathematical Proceedings of the Cambridge Philosophical Society. 9: 324–332. Retrieved 7 December 2024.324-332&rft.date=1897-10-25&rft.aulast=Pocklington&rft.aufirst=Henry C.&rft_id=http://www.teslacollection.com/tesla_articles/1897/cambridge_philosophical_society_proceedings/h_c_pocklington/electrical_oscillations_in_wires&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  46. ^ a b Balanis 2012, p. 442.
  47. ^ Hallén, E. (1938). "Theoretical investigations into the transmitting and receiving qualities of antennae". Nova Acta Upsal. 4 (11): 1–44.1-44&rft.date=1938&rft.aulast=Hallén&rft.aufirst=E.&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  48. ^ Gibson 2021, p. 91-93.
  49. ^ Kinayman & Aksun 2005, p. 281.
  50. ^ a b Michalski, K. A.; Mosig, J. R. (March 1997). "Multilayered Media Green's Functions in Integral Equation Formulations". IEEE Transactions on Antennas and Propagation. 45 (3): 508–519. Bibcode:1997ITAP...45..508M. doi:10.1109/8.558666.508-519&rft.date=1997-03&rft_id=info:doi/10.1109/8.558666&rft_id=info:bibcode/1997ITAP...45..508M&rft.aulast=Michalski&rft.aufirst=K. A.&rft.au=Mosig, J. R.&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  51. ^ Chew et al. 2001, pp. 15–18.
  52. ^ Davidson 2005, pp. 197–199.
  53. ^ Davidson 2005, pp. 202–208.
  54. ^ Ilic, Milan M.; Djordjevic, Miroslav; Ilic, Andjelija Z.; Notaros, Branislav M. (May 2009). "Higher Order Hybrid FEM-MoM Technique for Analysis of Antennas and Scatterers". IEEE Transactions on Antennas and Propagation. 57 (5): 1452–1460. Bibcode:2009ITAP...57.1452I. doi:10.1109/TAP.2009.2016725. S2CID 31273380.1452-1460&rft.date=2009-05&rft_id=https://api.semanticscholar.org/CorpusID:31273380#id-name=S2CID&rft_id=info:doi/10.1109/TAP.2009.2016725&rft_id=info:bibcode/2009ITAP...57.1452I&rft.aulast=Ilic&rft.aufirst=Milan M.&rft.au=Djordjevic, Miroslav&rft.au=Ilic, Andjelija Z.&rft.au=Notaros, Branislav M.&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  55. ^ Davidson 2005, p. 8-10.
  56. ^ Kinayman & Aksun 2005, p. 278.
  57. ^ Itoh, T.; Mittra, R. (July 1973). "Spectral-Domain Approach for Calculating the Dispersion Characteristics of Microstrip Lines". IEEE Transactions on Microwave Theory and Techniques. 21 (7): 496–499. doi:10.1109/TMTT.1973.1128044.496-499&rft.date=1973-07&rft_id=info:doi/10.1109/TMTT.1973.1128044&rft.aulast=Itoh&rft.aufirst=T.&rft.au=Mittra, R.&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  58. ^ Itoh, T. (July 1980). "Spectral Domain Immitance Approach for Dispersion Characteristics of Generalized Printed Transmission Lines". IEEE Transactions on Microwave Theory and Techniques. 28 (7): 733–736. doi:10.1109/TMTT.1980.1130158.733-736&rft.date=1980-07&rft_id=info:doi/10.1109/TMTT.1980.1130158&rft.aulast=Itoh&rft.aufirst=T.&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  59. ^ Das, N. K.; Pozar, D. M. (March 1987). "A Generalized Spectral-Domain Green's Function for Multilayer Dielectric Substrates with Application to Multilayer Transmission Lines". IEEE Transactions on Microwave Theory and Techniques. 35 (3): 326–335. doi:10.1109/TMTT.1987.1133646.326-335&rft.date=1987-03&rft_id=info:doi/10.1109/TMTT.1987.1133646&rft.aulast=Das&rft.aufirst=N. K.&rft.au=Pozar, D. M.&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  60. ^ Kinayman & Aksun 2005, p. 274.
  61. ^ Michalski, Krzysztof A.; Mosig, Juan R. (2016). "Efficient computation of Sommerfeld integral tails – methods and algorithms". Journal of Electromagnetic Waves and Applications. 30 (3): 281–317. doi:10.1080/09205071.2015.1129915.281-317&rft.date=2016&rft_id=info:doi/10.1080/09205071.2015.1129915&rft.aulast=Michalski&rft.aufirst=Krzysztof A.&rft.au=Mosig, Juan R.&rft_id=https://doi.org/10.1080%2F09205071.2015.1129915&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  62. ^ Chow, Y. L.; Yang, J. J.; Fang, D. G.; Howard, G. E. (March 1991). "A closed-form spatial Green's function for the thick microstrip substrate". IEEE Transactions on Microwave Theory and Techniques. 39 (3): 588–592. Bibcode:1991ITMTT..39..588C. doi:10.1109/22.75309.588-592&rft.date=1991-03&rft_id=info:doi/10.1109/22.75309&rft_id=info:bibcode/1991ITMTT..39..588C&rft.aulast=Chow&rft.aufirst=Y. L.&rft.au=Yang, J. J.&rft.au=Fang, D. G.&rft.au=Howard, G. E.&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  63. ^ a b Aksun, M. I. (May 1996). "A robust approach for the derivation of closed-form Green's functions". IEEE Transactions on Microwave Theory and Techniques. 44 (5): 651–658. Bibcode:1996ITMTT..44..651A. doi:10.1109/22.493917. hdl:11693/10779.651-658&rft.date=1996-05&rft_id=info:hdl/11693/10779&rft_id=info:doi/10.1109/22.493917&rft_id=info:bibcode/1996ITMTT..44..651A&rft.aulast=Aksun&rft.aufirst=M. I.&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  64. ^ a b c Alparslan, A.; Aksun, M. I.; Michalski, K. A. (February 2010). "Closed-Form Green's Functions in Planar Layered Media for All Ranges and Materials". IEEE Transactions on Microwave Theory and Techniques. 58 (3): 602–613. Bibcode:2010ITMTT..58..602A. doi:10.1109/TMTT.2010.2040354. S2CID 15018213.602-613&rft.date=2010-02&rft_id=https://api.semanticscholar.org/CorpusID:15018213#id-name=S2CID&rft_id=info:doi/10.1109/TMTT.2010.2040354&rft_id=info:bibcode/2010ITMTT..58..602A&rft.aulast=Alparslan&rft.aufirst=A.&rft.au=Aksun, M. I.&rft.au=Michalski, K. A.&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  65. ^ Ling, Feng; Jin, Jian-Ming (October 2000). "Discrete complex image method for Green's functions of general multilayer media". IEEE Microwave and Guided Wave Letters. 10 (10): 400–402. doi:10.1109/75.877225.400-402&rft.date=2000-10&rft_id=info:doi/10.1109/75.877225&rft.aulast=Ling&rft.aufirst=Feng&rft.au=Jin, Jian-Ming&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  66. ^ Tokgoz, C.; Dural, G. (January 2000). "Closed-form Green's functions for cylindrically stratified media". IEEE Transactions on Microwave Theory and Techniques. 48 (1): 40–49. Bibcode:2000ITMTT..48...40T. doi:10.1109/22.817470.40-49&rft.date=2000-01&rft_id=info:doi/10.1109/22.817470&rft_id=info:bibcode/2000ITMTT..48...40T&rft.aulast=Tokgoz&rft.aufirst=C.&rft.au=Dural, G.&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  67. ^ Okhmatovski, V. I.; Cangellaris, A. C. (February 2004). "Evaluation of layered media Green's functions via rational function fitting". IEEE Microwave and Wireless Components Letters. 14 (1): 22–24. doi:10.1109/LMWC.2003.821492. S2CID 12104884.22-24&rft.date=2004-02&rft_id=info:doi/10.1109/LMWC.2003.821492&rft_id=https://api.semanticscholar.org/CorpusID:12104884#id-name=S2CID&rft.aulast=Okhmatovski&rft.aufirst=V. I.&rft.au=Cangellaris, A. C.&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  68. ^ Kourkoulos, V. N.; Cangellaris, A. C. (May 2006). "Accurate approximation of Green's functions in planar stratified media in terms of a finite sum of spherical and cylindrical waves". IEEE Transactions on Antennas and Propagation. 54 (5): 1568–1576. Bibcode:2006ITAP...54.1568K. doi:10.1109/TAP.2006.874329. S2CID 24691332.1568-1576&rft.date=2006-05&rft_id=https://api.semanticscholar.org/CorpusID:24691332#id-name=S2CID&rft_id=info:doi/10.1109/TAP.2006.874329&rft_id=info:bibcode/2006ITAP...54.1568K&rft.aulast=Kourkoulos&rft.aufirst=V. N.&rft.au=Cangellaris, A. C.&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  69. ^ Cui, Tie Jun; Chew, Weng Cho (March 1999). "Fast evaluation of Sommerfeld integrals for EM scattering and radiation by three-dimensional buried objects". IEEE Transactions on Geoscience and Remote Sensing. 37 (2): 887–900. Bibcode:1999ITGRS..37..887C. doi:10.1109/36.752208.887-900&rft.date=1999-03&rft_id=info:doi/10.1109/36.752208&rft_id=info:bibcode/1999ITGRS..37..887C&rft.aulast=Cui&rft.aufirst=Tie Jun&rft.au=Chew, Weng Cho&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  70. ^ Capolino, F. Capolino; Wilton, D. R.; Johnson, W. A. (September 2005). "Efficient computation of the 2-D Green's function for 1-D periodic structures using the Ewald method". IEEE Transactions on Antennas and Propagation . 53 (9): 2977–2984. Bibcode:2005ITAP...53.2977C. doi:10.1109/TAP.2005.854556. S2CID 32502117.2977-2984&rft.date=2005-09&rft_id=https://api.semanticscholar.org/CorpusID:32502117#id-name=S2CID&rft_id=info:doi/10.1109/TAP.2005.854556&rft_id=info:bibcode/2005ITAP...53.2977C&rft.aulast=Capolino&rft.aufirst=F. Capolino&rft.au=Wilton, D. R.&rft.au=Johnson, W. A.&rft_id=https://escholarship.org/uc/item/6vd3x1c2&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
  71. ^ Kinayman, Noyan; Aksun, M. I. (1995). "Comparative study of acceleration techniques for integrals and series in electromagnetic problems". Radio Science. 30 (6): 1713–1722. doi:10.1029/95RS02060. hdl:11693/48408.1713-1722&rft.date=1995&rft_id=info:hdl/11693/48408&rft_id=info:doi/10.1029/95RS02060&rft.aulast=Kinayman&rft.aufirst=Noyan&rft.au=Aksun, M. I.&rfr_id=info:sid/en.wikipedia.org:Method of moments (electromagnetics)" class="Z3988">
Bibliography