Schnirelmann density

(Redirected from Mann's theorem)

In additive number theory, the Schnirelmann density of a sequence of numbers is a way to measure how "dense" the sequence is. It is named after Russian mathematician Lev Schnirelmann, who was the first to study it.[1][2]

Definition

edit

The Schnirelmann density of a set of natural numbers A is defined as

 

where A(n) denotes the number of elements of A not exceeding n and inf is infimum.[3]

The Schnirelmann density is well-defined even if the limit of A(n)/n as n → ∞ fails to exist (see upper and lower asymptotic density).

Properties

edit

By definition, 0 ≤ A(n) ≤ n and n σAA(n) for all n, and therefore 0 ≤ σA ≤ 1, and σA = 1 if and only if A = N. Furthermore,

 

Sensitivity

edit

The Schnirelmann density is sensitive to the first values of a set:

 .

In particular,

 

and

 

Consequently, the Schnirelmann densities of the even numbers and the odd numbers, which one might expect to agree, are 0 and 1/2 respectively. Schnirelmann and Yuri Linnik exploited this sensitivity.

Schnirelmann's theorems

edit

If we set  , then Lagrange's four-square theorem can be restated as  . (Here the symbol   denotes the sumset of   and  .) It is clear that  . In fact, we still have  , and one might ask at what point the sumset attains Schnirelmann density 1 and how does it increase. It actually is the case that   and one sees that sumsetting   once again yields a more populous set, namely all of  . Schnirelmann further succeeded in developing these ideas into the following theorems, aiming towards Additive Number Theory, and proving them to be a novel resource (if not greatly powerful) to attack important problems, such as Waring's problem and Goldbach's conjecture.

Theorem. Let   and   be subsets of  . Then

 

Note that  . Inductively, we have the following generalization.

Corollary. Let   be a finite family of subsets of  . Then

 

The theorem provides the first insights on how sumsets accumulate. It seems unfortunate that its conclusion stops short of showing   being superadditive. Yet, Schnirelmann provided us with the following results, which sufficed for most of his purpose.

Theorem. Let   and   be subsets of  . If  , then

 

Theorem. (Schnirelmann) Let  . If   then there exists   such that

 

Additive bases

edit

A subset   with the property that   for a finite sum, is called an additive basis, and the least number of summands required is called the degree (sometimes order) of the basis. Thus, the last theorem states that any set with positive Schnirelmann density is an additive basis. In this terminology, the set of squares   is an additive basis of degree 4. (About an open problem for additive bases, see Erdős–Turán conjecture on additive bases.)

Mann's theorem

edit

Historically the theorems above were pointers to the following result, at one time known as the   hypothesis. It was used by Edmund Landau and was finally proved by Henry Mann in 1942.

Theorem. (Mann 1942) Let   and   be subsets of  . In case that  , we still have

 

An analogue of this theorem for lower asymptotic density was obtained by Kneser.[4] At a later date, E. Artin and P. Scherk simplified the proof of Mann's theorem.[5]

Waring's problem

edit

Let   and   be natural numbers. Let  . Define   to be the number of non-negative integral solutions to the equation

 

and   to be the number of non-negative integral solutions to the inequality

 

in the variables  , respectively. Thus  . We have

  •  
  •  

The volume of the  -dimensional body defined by  , is bounded by the volume of the hypercube of size  , hence  . The hard part is to show that this bound still works on the average, i.e.,

Lemma. (Linnik) For all   there exists   and a constant  , depending only on  , such that for all  ,

 

for all  

With this at hand, the following theorem can be elegantly proved.

Theorem. For all   there exists   for which  .

We have thus established the general solution to Waring's Problem:

Corollary. (Hilbert 1909) For all   there exists  , depending only on  , such that every positive integer   can be expressed as the sum of at most   many  -th powers.

Schnirelmann's constant

edit

In 1930 Schnirelmann used these ideas in conjunction with the Brun sieve to prove Schnirelmann's theorem,[1][2] that any natural number greater than 1 can be written as the sum of not more than C prime numbers, where C is an effectively computable constant:[6] Schnirelmann obtained C < 800000.[7] Schnirelmann's constant is the lowest number C with this property.[6]

Olivier Ramaré showed in (Ramaré 1995) that Schnirelmann's constant is at most 7,[6] improving the earlier upper bound of 19 obtained by Hans Riesel and R. C. Vaughan.

Schnirelmann's constant is at least 3; Goldbach's conjecture implies that this is the constant's actual value.[6]

In 2013, Harald Helfgott proved Goldbach's weak conjecture for all odd numbers. Therefore, Schnirelmann's constant is at most 4.[8][9][10][11]

Essential components

edit

Khintchin proved that the sequence of squares, though of zero Schnirelmann density, when added to a sequence of Schnirelmann density between 0 and 1, increases the density:

 

This was soon simplified and extended by Erdős, who showed, that if A is any sequence with Schnirelmann density α and B is an additive basis of order k then

 [12]

and this was improved by Plünnecke to

 [13]

Sequences with this property, of increasing density less than one by addition, were named essential components by Khintchin. Linnik showed that an essential component need not be an additive basis[14] as he constructed an essential component that has xo(1) elements less than x. More precisely, the sequence has

 

elements less than x for some c < 1. This was improved by E. Wirsing to

 

For a while, it remained an open problem how many elements an essential component must have. Finally, Ruzsa determined that for every ε > 0 there is an essential component which has at most c(log x)1 ε elements up to x, but there is no essential component which has c(log x)1 o(1) elements up to x.[15][16]

References

edit
  1. ^ a b Schnirelmann, L.G. (1930). "On the additive properties of numbers", first published in "Proceedings of the Don Polytechnic Institute in Novocherkassk" (in Russian), vol XIV (1930), pp. 3-27, and reprinted in "Uspekhi Matematicheskikh Nauk" (in Russian), 1939, no. 6, 9–25.
  2. ^ a b Schnirelmann, L.G. (1933). First published as "Über additive Eigenschaften von Zahlen" in "Mathematische Annalen" (in German), vol 107 (1933), 649-690, and reprinted as "On the additive properties of numbers" in "Uspekhin. Matematicheskikh Nauk" (in Russian), 1940, no. 7, 7–46.
  3. ^ Nathanson (1996) pp.191–192
  4. ^ Nathanson (1990) p.397
  5. ^ E. Artin and P. Scherk (1943) On the sums of two sets of integers, Ann. of Math 44, page=138-142.
  6. ^ a b c d Nathanson (1996) p.208
  7. ^ Gelfond & Linnik (1966) p.136
  8. ^ Helfgott, Harald A. (2013). "Major arcs for Goldbach's theorem". arXiv:1305.2897 [math.NT].
  9. ^ Helfgott, Harald A. (2012). "Minor arcs for Goldbach's problem". arXiv:1205.5252 [math.NT].
  10. ^ Helfgott, Harald A. (2013). "The ternary Goldbach conjecture is true". arXiv:1312.7748 [math.NT].
  11. ^ Helfgoot, Harald A. (2015). "The ternary Goldbach problem". arXiv:1501.05438 [math.NT].
  12. ^ Ruzsa (2009) p.177
  13. ^ Ruzsa (2009) p.179
  14. ^ Linnik, Yu. V. (1942). "On Erdõs's theorem on the addition of numerical sequences". Mat. Sb. 10: 67–78. Zbl 0063.03574.67-78&rft.date=1942&rft_id=https://zbmath.org/?format=complete&q=an:0063.03574#id-name=Zbl&rft.aulast=Linnik&rft.aufirst=Yu. V.&rfr_id=info:sid/en.wikipedia.org:Schnirelmann density" class="Z3988">
  15. ^ Imre Z. Ruzsa, Essential Components, Proceedings of the London Mathematical Society, Volume s3-54, Issue 1, January 1987, Pages 38–56, https://doi.org/10.1112/plms/s3-54.1.38 01 January 1987
  16. ^ Ruzsa (2009) p.184
  • Hilbert, David (1909). "Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl nter Potenzen (Waringsches Problem)". Mathematische Annalen. 67 (3): 281–300. doi:10.1007/BF01450405. ISSN 0025-5831. MR 1511530. S2CID 179177986.281-300&rft.date=1909&rft_id=https://api.semanticscholar.org/CorpusID:179177986#id-name=S2CID&rft_id=https://mathscinet.ams.org/mathscinet-getitem?mr=1511530#id-name=MR&rft.issn=0025-5831&rft_id=info:doi/10.1007/BF01450405&rft.aulast=Hilbert&rft.aufirst=David&rft_id=https://zenodo.org/record/1428266&rfr_id=info:sid/en.wikipedia.org:Schnirelmann density" class="Z3988">
  • Schnirelmann, L.G. (1930). "On additive properties of numbers". Ann. Inst. Polytechn. Novočerkassk (in Russian). 14: 3–28. JFM 56.0892.02.3-28&rft.date=1930&rft_id=https://zbmath.org/?format=complete&q=an:56.0892.02#id-name=JFM&rft.aulast=Schnirelmann&rft.aufirst=L.G.&rfr_id=info:sid/en.wikipedia.org:Schnirelmann density" class="Z3988">
  • Schnirelmann, L.G. (1933). "Über additive Eigenschaften von Zahlen". Math. Ann. (in German). 107: 649–690. doi:10.1007/BF01448914. S2CID 123067485. Zbl 0006.10402.649-690&rft.date=1933&rft_id=https://zbmath.org/?format=complete&q=an:0006.10402#id-name=Zbl&rft_id=https://api.semanticscholar.org/CorpusID:123067485#id-name=S2CID&rft_id=info:doi/10.1007/BF01448914&rft.aulast=Schnirelmann&rft.aufirst=L.G.&rfr_id=info:sid/en.wikipedia.org:Schnirelmann density" class="Z3988">
  • Mann, Henry B. (1942). "A proof of the fundamental theorem on the density of sums of sets of positive integers". Annals of Mathematics. Second Series. 43 (3): 523–527. doi:10.2307/1968807. ISSN 0003-486X. JSTOR 1968807. MR 0006748. Zbl 0061.07406.523-527&rft.date=1942&rft_id=https://zbmath.org/?format=complete&q=an:0061.07406#id-name=Zbl&rft_id=https://www.jstor.org/stable/1968807#id-name=JSTOR&rft_id=info:doi/10.2307/1968807&rft.issn=0003-486X&rft_id=https://mathscinet.ams.org/mathscinet-getitem?mr=0006748#id-name=MR&rft.aulast=Mann&rft.aufirst=Henry B.&rfr_id=info:sid/en.wikipedia.org:Schnirelmann density" class="Z3988">
  • Gelfond, A.O.; Linnik, Yu. V. (1966). L.J. Mordell (ed.). Elementary Methods in Analytic Number Theory. George Allen & Unwin.
  • Mann, Henry B. (1976). Addition Theorems: The Addition Theorems of Group Theory and Number Theory (Corrected reprint of 1965 Wiley ed.). Huntington, New York: Robert E. Krieger Publishing Company. ISBN 978-0-88275-418-5. MR 0424744.
  • Nathanson, Melvyn B. (1990). "Best possible results on the density of sumsets". In Berndt, Bruce C.; Diamond, Harold G.; Halberstam, Heini; et al. (eds.). Analytic number theory. Proceedings of a conference in honor of Paul T. Bateman, held on April 25-27, 1989, at the University of Illinois, Urbana, IL (USA). Progress in Mathematics. Vol. 85. Boston: Birkhäuser. pp. 395–403. ISBN 978-0-8176-3481-0. Zbl 0722.11007.395-403&rft.pub=Birkhäuser&rft.date=1990&rft_id=https://zbmath.org/?format=complete&q=an:0722.11007#id-name=Zbl&rft.isbn=978-0-8176-3481-0&rft.aulast=Nathanson&rft.aufirst=Melvyn B.&rfr_id=info:sid/en.wikipedia.org:Schnirelmann density" class="Z3988">
  • Ramaré, O. (1995). "On Šnirel'man's constant". Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV. 22 (4): 645–706. Zbl 0851.11057. Retrieved 2011-03-28.645-706&rft.date=1995&rft_id=https://zbmath.org/?format=complete&q=an:0851.11057#id-name=Zbl&rft.aulast=Ramaré&rft.aufirst=O.&rft_id=http://www.numdam.org/item?id=ASNSP_1995_4_22_4_645_0&rfr_id=info:sid/en.wikipedia.org:Schnirelmann density" class="Z3988">
  • Nathanson, Melvyn B. (1996). Additive Number Theory: the Classical Bases. Graduate Texts in Mathematics. Vol. 164. Springer-Verlag. ISBN 978-0-387-94656-6. Zbl 0859.11002.
  • Nathanson, Melvyn B. (2000). Elementary Methods in Number Theory. Graduate Texts in Mathematics. Vol. 195. Springer-Verlag. pp. 359–367. ISBN 978-0-387-98912-9. Zbl 0953.11002.359-367&rft.pub=Springer-Verlag&rft.date=2000&rft_id=https://zbmath.org/?format=complete&q=an:0953.11002#id-name=Zbl&rft.isbn=978-0-387-98912-9&rft.aulast=Nathanson&rft.aufirst=Melvyn B.&rfr_id=info:sid/en.wikipedia.org:Schnirelmann density" class="Z3988">
  • Khinchin, A. Ya. (1998). Three Pearls of Number Theory. Mineola, NY: Dover. ISBN 978-0-486-40026-6. Has a proof of Mann's theorem and the Schnirelmann-density proof of Waring's conjecture.
  • Artin, Emil; Scherk, Peter (1943). "On the sum of two sets of integers". Annals of Mathematics. 44 (2): 138–142. doi:10.2307/1968760. JSTOR 1968760.138-142&rft.date=1943&rft_id=info:doi/10.2307/1968760&rft_id=https://www.jstor.org/stable/1968760#id-name=JSTOR&rft.aulast=Artin&rft.aufirst=Emil&rft.au=Scherk, Peter&rfr_id=info:sid/en.wikipedia.org:Schnirelmann density" class="Z3988">
  • Cojocaru, Alina Carmen; Murty, M. Ram (2005). An introduction to sieve methods and their applications. London Mathematical Society Student Texts. Vol. 66. Cambridge University Press. pp. 100–105. ISBN 978-0-521-61275-3.100-105&rft.pub=Cambridge University Press&rft.date=2005&rft.isbn=978-0-521-61275-3&rft.aulast=Cojocaru&rft.aufirst=Alina Carmen&rft.au=Murty, M. Ram&rfr_id=info:sid/en.wikipedia.org:Schnirelmann density" class="Z3988">
  • Ruzsa, Imre Z. (2009). "Sumsets and structure". In Geroldinger, Alfred; Ruzsa, Imre Z. (eds.). Combinatorial number theory and additive group theory. Advanced Courses in Mathematics CRM Barcelona. Elsholtz, C.; Freiman, G.; Hamidoune, Y. O.; Hegyvári, N.; Károlyi, G.; Nathanson, M.; Solymosi, J.; Stanchescu, Y. With a foreword by Javier Cilleruelo, Marc Noy and Oriol Serra (Coordinators of the DocCourse). Basel: Birkhäuser. pp. 87–210. ISBN 978-3-7643-8961-1. Zbl 1221.11026.