In mathematics, Maillet's determinant Dp is the determinant of the matrix introduced by Maillet (1913) whose entries are R(s/r) for s,r = 1, 2, ..., (p – 1)/2 ∈ Z/pZ for an odd prime p, where and R(a) is the least positive residue of a mod p (Muir 1930, pages 340–342). Malo (1914) calculated the determinant Dp for p = 3, 5, 7, 11, 13 and found that in these cases it is given by (–p)(p – 3)/2, and conjectured that it is given by this formula in general. Carlitz & Olson (1955) showed that this conjecture is incorrect; the determinant in general is given by Dp = (–p)(p – 3)/2h−, where h− is the first factor of the class number of the cyclotomic field generated by pth roots of 1, which happens to be 1 for p less than 23. In particular, this verifies Maillet's conjecture that the determinant is always non-zero. Chowla and Weil had previously found the same formula but did not publish it. Their results have been extended to all non-prime odd numbers by K. Wang(1982).
References
edit- Carlitz, L.; Olson, F. R. (1955), "Maillet's determinant", Proceedings of the American Mathematical Society, 6 (2): 265–269, doi:10.2307/2032352, ISSN 0002-9939, JSTOR 2032352, MR 0069207265-269&rft.date=1955&rft.issn=0002-9939&rft_id=https://mathscinet.ams.org/mathscinet-getitem?mr=0069207#id-name=MR&rft_id=https://www.jstor.org/stable/2032352#id-name=JSTOR&rft_id=info:doi/10.2307/2032352&rft.aulast=Carlitz&rft.aufirst=L.&rft.au=Olson, F. R.&rfr_id=info:sid/en.wikipedia.org:Maillet's determinant" class="Z3988">
- Maillet, E. (1913), "Question 4269", L'Intermédiaire des Mathématiciens, xx: 218
- Malo, E. (1914), "Sur un certain déterminant d'ordre premier", L'Intermédiaire des Mathématiciens, xxi: 173–176173-176&rft.date=1914&rft.aulast=Malo&rft.aufirst=E.&rft_id=http://babel.hathitrust.org/cgi/pt?id=pst.000052363436;view=1up;seq=189&rfr_id=info:sid/en.wikipedia.org:Maillet's determinant" class="Z3988">
- Muir, Thomas (1930), Contributions To The History Of Determinants 1900–1920, Blackie And Son Limited.
- Wang, Kai (1984), "On Maillet determinant", Journal of Number Theory, 18 (3), Journal of Number Theory 18: 306–312, doi:10.1016/0022-314X(84)90064-7306-312&rft.date=1984&rft_id=info:doi/10.1016/0022-314X(84)90064-7&rft.aulast=Wang&rft.aufirst=Kai&rfr_id=info:sid/en.wikipedia.org:Maillet's determinant" class="Z3988">