Target of rapamycin complex subunit LST8, also known as mammalian lethal with SEC13 protein 8 (mLST8) or TORC subunit LST8 or G protein beta subunit-like (GβL or Gable), is a protein that in humans is encoded by the MLST8 (MTOR associated protein, LST8 homolog) gene.[5] It is a subunit of both mTORC1 and mTORC2, complexes that regulate cell growth and survival in response to nutrient, energy, redox, and hormonal signals.[6] It is upregulated in several human colon and prostate cancer cell lines and tissues. Knockdown of mLST8 prevented mTORC formation and inhibited tumor growth and invasiveness.[7]
References
edit- ^ a b c GRCh38: Ensembl release 89: ENSG00000167965 – Ensembl, May 2017
- ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000024142 – Ensembl, May 2017
- ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ "Entrez Gene: MTOR associated protein".
- ^ "UniProtKB – Q9BVC4 (LST8_HUMAN)".
- ^ Kakumoto K, Ikeda J, Okada M, Morii E, Oneyama C (23 Apr 2015). "mLST8 Promotes mTOR-Mediated Tumor Progression". PLOS ONE. 10 (4): e0119015. Bibcode:2015PLoSO..1019015K. doi:10.1371/journal.pone.0119015. PMC 4408021. PMID 25906254.
Further reading
edit- Ali SM, Sabatini DM (2005). "Structure of S6 kinase 1 determines whether raptor-mTOR or rictor-mTOR phosphorylates its hydrophobic motif site". J. Biol. Chem. 280 (20): 19445–8. doi:10.1074/jbc.C500125200. PMID 15809305.19445-8&rft.date=2005&rft_id=info:doi/10.1074/jbc.C500125200&rft_id=info:pmid/15809305&rft.aulast=Ali&rft.aufirst=SM&rft.au=Sabatini, DM&rft_id=https://doi.org/10.1074%2Fjbc.C500125200&rfr_id=info:sid/en.wikipedia.org:MLST8" class="Z3988">
- Rodgers BD, Levine MA, Bernier M, Montrose-Rafizadeh C (2001). "Insulin regulation of a novel WD-40 repeat protein in adipocytes". J. Endocrinol. 168 (2): 325–32. doi:10.1677/joe.0.1680325. PMID 11182770.325-32&rft.date=2001&rft_id=info:doi/10.1677/joe.0.1680325&rft_id=info:pmid/11182770&rft.aulast=Rodgers&rft.aufirst=BD&rft.au=Levine, MA&rft.au=Bernier, M&rft.au=Montrose-Rafizadeh, C&rft_id=https://doi.org/10.1677%2Fjoe.0.1680325&rfr_id=info:sid/en.wikipedia.org:MLST8" class="Z3988">
- Long X, Lin Y, Ortiz-Vega S, et al. (2005). "Rheb binds and regulates the mTOR kinase". Curr. Biol. 15 (8): 702–13. Bibcode:2005CBio...15..702L. doi:10.1016/j.cub.2005.02.053. PMID 15854902. S2CID 3078706.702-13&rft.date=2005&rft_id=info:doi/10.1016/j.cub.2005.02.053&rft_id=https://api.semanticscholar.org/CorpusID:3078706#id-name=S2CID&rft_id=info:pmid/15854902&rft_id=info:bibcode/2005CBio...15..702L&rft.aulast=Long&rft.aufirst=X&rft.au=Lin, Y&rft.au=Ortiz-Vega, S&rft_id=https://doi.org/10.1016%2Fj.cub.2005.02.053&rfr_id=info:sid/en.wikipedia.org:MLST8" class="Z3988">
- Kaizuka T, Hara T, Oshiro N, et al. (2010). "Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly". J. Biol. Chem. 285 (26): 20109–16. doi:10.1074/jbc.M110.121699. PMC 2888423. PMID 20427287.20109-16&rft.date=2010&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2888423#id-name=PMC&rft_id=info:pmid/20427287&rft_id=info:doi/10.1074/jbc.M110.121699&rft.aulast=Kaizuka&rft.aufirst=T&rft.au=Hara, T&rft.au=Oshiro, N&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2888423&rfr_id=info:sid/en.wikipedia.org:MLST8" class="Z3988">
- Loewith R, Jacinto E, Wullschleger S, et al. (2002). "Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control". Mol. Cell. 10 (3): 457–68. doi:10.1016/S1097-2765(02)00636-6. PMID 12408816.457-68&rft.date=2002&rft_id=info:doi/10.1016/S1097-2765(02)00636-6&rft_id=info:pmid/12408816&rft.aulast=Loewith&rft.aufirst=R&rft.au=Jacinto, E&rft.au=Wullschleger, S&rft_id=https://doi.org/10.1016%2FS1097-2765%2802%2900636-6&rfr_id=info:sid/en.wikipedia.org:MLST8" class="Z3988">
- Kimura K, Wakamatsu A, Suzuki Y, et al. (2006). "Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes". Genome Res. 16 (1): 55–65. doi:10.1101/gr.4039406. PMC 1356129. PMID 16344560.55-65&rft.date=2006&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1356129#id-name=PMC&rft_id=info:pmid/16344560&rft_id=info:doi/10.1101/gr.4039406&rft.aulast=Kimura&rft.aufirst=K&rft.au=Wakamatsu, A&rft.au=Suzuki, Y&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1356129&rfr_id=info:sid/en.wikipedia.org:MLST8" class="Z3988">
- Sarbassov DD, Sabatini DM (2005). "Redox regulation of the nutrient-sensitive raptor-mTOR pathway and complex". J. Biol. Chem. 280 (47): 39505–9. doi:10.1074/jbc.M506096200. PMID 16183647.39505-9&rft.date=2005&rft_id=info:doi/10.1074/jbc.M506096200&rft_id=info:pmid/16183647&rft.aulast=Sarbassov&rft.aufirst=DD&rft.au=Sabatini, DM&rft_id=https://doi.org/10.1074%2Fjbc.M506096200&rfr_id=info:sid/en.wikipedia.org:MLST8" class="Z3988">
- Oshiro N, Yoshino K, Hidayat S, et al. (2004). "Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function". Genes Cells. 9 (4): 359–66. doi:10.1111/j.1356-9597.2004.00727.x. hdl:20.500.14094/D1002969. PMID 15066126. S2CID 24814691.359-66&rft.date=2004&rft_id=info:hdl/20.500.14094/D1002969&rft_id=https://api.semanticscholar.org/CorpusID:24814691#id-name=S2CID&rft_id=info:pmid/15066126&rft_id=info:doi/10.1111/j.1356-9597.2004.00727.x&rft.aulast=Oshiro&rft.aufirst=N&rft.au=Yoshino, K&rft.au=Hidayat, S&rft_id=https://doi.org/10.1111%2Fj.1356-9597.2004.00727.x&rfr_id=info:sid/en.wikipedia.org:MLST8" class="Z3988">
- Inoki K, Ouyang H, Li Y, Guan KL (2005). "Signaling by target of rapamycin proteins in cell growth control". Microbiol. Mol. Biol. Rev. 69 (1): 79–100. doi:10.1128/MMBR.69.1.79-100.2005. PMC 1082789. PMID 15755954.79-100&rft.date=2005&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1082789#id-name=PMC&rft_id=info:pmid/15755954&rft_id=info:doi/10.1128/MMBR.69.1.79-100.2005&rft.aulast=Inoki&rft.aufirst=K&rft.au=Ouyang, H&rft.au=Li, Y&rft.au=Guan, KL&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1082789&rfr_id=info:sid/en.wikipedia.org:MLST8" class="Z3988">
- Behrends C, Sowa ME, Gygi SP, Harper JW (2010). "Network organization of the human autophagy system". Nature. 466 (7302): 68–76. Bibcode:2010Natur.466...68B. doi:10.1038/nature09204. PMC 2901998. PMID 20562859.68-76&rft.date=2010&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901998#id-name=PMC&rft_id=info:pmid/20562859&rft_id=info:doi/10.1038/nature09204&rft_id=info:bibcode/2010Natur.466...68B&rft.aulast=Behrends&rft.aufirst=C&rft.au=Sowa, ME&rft.au=Gygi, SP&rft.au=Harper, JW&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901998&rfr_id=info:sid/en.wikipedia.org:MLST8" class="Z3988">
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039.40-5&rft.date=2004&rft_id=info:doi/10.1038/ng1285&rft_id=info:pmid/14702039&rft.aulast=Ota&rft.aufirst=T&rft.au=Suzuki, Y&rft.au=Nishikawa, T&rft_id=https://doi.org/10.1038%2Fng1285&rfr_id=info:sid/en.wikipedia.org:MLST8" class="Z3988">
- Kawai S, Enzan H, Hayashi Y, et al. (2003). "Vinculin: a novel marker for quiescent and activated hepatic stellate cells in human and rat livers". Virchows Arch. 443 (1): 78–86. doi:10.1007/s00428-003-0804-4. PMID 12719976. S2CID 21552704.78-86&rft.date=2003&rft_id=https://api.semanticscholar.org/CorpusID:21552704#id-name=S2CID&rft_id=info:pmid/12719976&rft_id=info:doi/10.1007/s00428-003-0804-4&rft.aulast=Kawai&rft.aufirst=S&rft.au=Enzan, H&rft.au=Hayashi, Y&rfr_id=info:sid/en.wikipedia.org:MLST8" class="Z3988">
- Strausberg RL, Feingold EA, Grouse LH, et al. (2002). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. Bibcode:2002PNAS...9916899M. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.16899-903&rft.date=2002&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC139241#id-name=PMC&rft_id=info:pmid/12477932&rft_id=info:doi/10.1073/pnas.242603899&rft_id=info:bibcode/2002PNAS...9916899M&rft.aulast=Strausberg&rft.aufirst=RL&rft.au=Feingold, EA&rft.au=Grouse, LH&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC139241&rfr_id=info:sid/en.wikipedia.org:MLST8" class="Z3988">
- Kim DH, Sarbassov DD, Ali SM, et al. (2003). "GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR". Mol. Cell. 11 (4): 895–904. doi:10.1016/S1097-2765(03)00114-X. PMID 12718876.895-904&rft.date=2003&rft_id=info:doi/10.1016/S1097-2765(03)00114-X&rft_id=info:pmid/12718876&rft.aulast=Kim&rft.aufirst=DH&rft.au=Sarbassov, DD&rft.au=Ali, SM&rft_id=https://doi.org/10.1016%2FS1097-2765%2803%2900114-X&rfr_id=info:sid/en.wikipedia.org:MLST8" class="Z3988">
- Jacinto E, Loewith R, Schmidt A, et al. (2004). "Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive". Nat. Cell Biol. 6 (11): 1122–8. doi:10.1038/ncb1183. PMID 15467718. S2CID 13831153.1122-8&rft.date=2004&rft_id=https://api.semanticscholar.org/CorpusID:13831153#id-name=S2CID&rft_id=info:pmid/15467718&rft_id=info:doi/10.1038/ncb1183&rft.aulast=Jacinto&rft.aufirst=E&rft.au=Loewith, R&rft.au=Schmidt, A&rfr_id=info:sid/en.wikipedia.org:MLST8" class="Z3988">
- Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005). "Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex". Science. 307 (5712): 1098–101. Bibcode:2005Sci...307.1098S. doi:10.1126/science.1106148. PMID 15718470. S2CID 45837814.1098-101&rft.date=2005&rft_id=info:doi/10.1126/science.1106148&rft_id=https://api.semanticscholar.org/CorpusID:45837814#id-name=S2CID&rft_id=info:pmid/15718470&rft_id=info:bibcode/2005Sci...307.1098S&rft.aulast=Sarbassov&rft.aufirst=DD&rft.au=Guertin, DA&rft.au=Ali, SM&rft.au=Sabatini, DM&rfr_id=info:sid/en.wikipedia.org:MLST8" class="Z3988">