Lysinibacillus sphaericus

Lysinibacillus sphaericus (previously known as Bacillus sphaericus)[1] is a Gram-positive, mesophilic, rod-shaped bacterium commonly found on soil. It can form resistant endospores that are tolerant to high temperatures, chemicals and ultraviolet light and can remain viable for long periods of time. It is of particular interest to the World Health Organization due to the larvicide effect of some strains against two mosquito genera (Culex and Anopheles),[2] more effective than Bacillus thuringiensis, frequently used as a biological pest control. L. sphaericus cells in a vegetative state are also effective against Aedes aegypti larvae,[3] an important vector of yellow fever and dengue viruses.

Lysinibacillus sphaericus
Scientific classification Edit this classification
Domain: Bacteria
Phylum: Bacillota
Class: Bacilli
Order: Caryophanales
Family: Bacillaceae
Genus: Lysinibacillus
Species:
L. sphaericus
Binomial name
Lysinibacillus sphaericus
(Meyer and Neide 1904) Ahmed et al. 2007

A bacterium similar to this species was found in a 25-million-year-old amber from the Dominican Republic. The endospore was successfully revived.[4]

Classification

edit

The reclassification from Bacillus sphaericus to Lysinibacillus sphaericus is based on the fact that the Lysinibacillus genus, in contrast to the type species of the genus Bacillus, contains peptidoglycan with lysine, aspartic acid, alanine and glutamic acid.[1]

L. sphaericus has five homology groups (I-V), with group II further dividing into subgroups IIA and IIB.[5] Even before full genomes were known, these groups were proposed to represent distinct species, due to the low levels of homology between groups. In 2015, genome-scale studies by Xu et al show that the current species is paraphyletic and subsumes L. fusiformis and L. boronitolerans.[6] GTDB's whole-genome comparison concurs in the need for splitting species.[7]

Biological pest control

edit

The entomopathogenic strains are found in the homology subgroup IIA, nonetheless, this group contains also non pathogenic isolates The insecticidal activity of some strains of L. sphaericus was first discovered in 1965 and further studies have shown mosquitoes to be the major target of this bacterium. There are reports of activity against other organisms such as the nematode Trichostrongylus colubriformis to which it has lethal effects on the eggs.[8] It is of important use in mosquito control programs worldwide and has high specificity against mosquito larvae in addition to being safe for mammals, fish, birds and nondipterean insects.[2]

The high toxicity strains produce during sporulation a binary toxin composed of BinA (42 kDa) and BinB (51 kDa) proteins, which is the major insecticidal component. The protein BinB acts by binding to a receptor in the epithelial midgut cells, facilitating the entrance of BinA which causes cellular lysis.[9] After being ingested by larvae, these proteins are solubilized in the gut and undergo proteolysis to active lower molecular weight derivatives. The vegetative cells of both high- and low-toxicity strains produce Mtx1, Mtx2 and Mtx3 toxins, but Mtx1 and Mtx2 are degraded by proteases during the stationary phase, consequently making them undetectable in sporulated cultures.[10] In addition, the presence of binary-toxin genes and proteins has been determined in 18 pathogenic strains.[11] Strains OT4b.2, OT4b.20, OT4b.25, OT4b.26 and OT4b.58 were found as toxic as the spores of the reference WHO strain 2362, against C. quinquefasciatus larvae.[12]

Bioremediation

edit

Heavy metals

edit

The bioremediation potential of L. sphaericus has been widely studied: strains with chromate reduction capacity have been isolated from different contaminated environments and naturally metal-rich soils.[13] The strain JG-A12, isolated from uranium-mining waste piles in Germany, is also able to reversibly bind aluminium, cadmium, copper, lead and uranium.[14] Different studies have shown that this ability is due to the presence of a proteinaceous surface covering these cells, called the S-layer, which is able to bind high quantities of heavy metals in saline solutions.[15] The biotechnological potential among Colombian isolates IV(4)10 and OT4b.31 showed heavy metal biosorption in living and dead biomass.[16] L. sphaericus strain CBAM5 showed resistance to 200 mM of arsenic which may be explained by the presence of the arsenate reductase gene.[17]

References

edit
  1. ^ a b Ahmed, Iftikhar; Yokota, Akira; Yamazoe, Atsushi; Fujiwara, Toru (2007). "Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov". International Journal of Systematic and Evolutionary Microbiology. 57 (5): 1117–1125. doi:10.1099/ijs.0.63867-0. PMID 17473269.1117-1125&rft.date=2007&rft_id=info:doi/10.1099/ijs.0.63867-0&rft_id=info:pmid/17473269&rft.aulast=Ahmed&rft.aufirst=Iftikhar&rft.au=Yokota, Akira&rft.au=Yamazoe, Atsushi&rft.au=Fujiwara, Toru&rft_id=https://doi.org/10.1099%2Fijs.0.63867-0&rfr_id=info:sid/en.wikipedia.org:Lysinibacillus sphaericus" class="Z3988">
  2. ^ a b Berry, Colin (2012-01-01). "The bacterium, Lysinibacillus sphaericus, as an insect pathogen". Journal of Invertebrate Pathology. 109 (1): 1–10. doi:10.1016/j.jip.2011.11.008. PMID 22137877.1-10&rft.date=2012-01-01&rft_id=info:doi/10.1016/j.jip.2011.11.008&rft_id=info:pmid/22137877&rft.aulast=Berry&rft.aufirst=Colin&rft_id=https://doi.org/10.1016%2Fj.jip.2011.11.008&rfr_id=info:sid/en.wikipedia.org:Lysinibacillus sphaericus" class="Z3988">
  3. ^ Santana-Martinez, JC; Silva, JJ; Dussan, J (February 2019). "Efficacy of Lysinibacillus sphaericus against mixed-cultures of field-collected and laboratory larvae of Aedes aegypti and Culex quinquefasciatus". Bulletin of Entomological Research. 109 (1): 111–118. doi:10.1017/S0007485318000342. PMID 29784071. S2CID 29162148.111-118&rft.date=2019-02&rft_id=https://api.semanticscholar.org/CorpusID:29162148#id-name=S2CID&rft_id=info:pmid/29784071&rft_id=info:doi/10.1017/S0007485318000342&rft.aulast=Santana-Martinez&rft.aufirst=JC&rft.au=Silva, JJ&rft.au=Dussan, J&rfr_id=info:sid/en.wikipedia.org:Lysinibacillus sphaericus" class="Z3988">
  4. ^ Cano, RJ; Borucki, MK (19 May 1995). "Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber". Science. 268 (5213): 1060–4. doi:10.1126/science.7538699. PMID 7538699.1060-4&rft.date=1995-05-19&rft_id=info:doi/10.1126/science.7538699&rft_id=info:pmid/7538699&rft.aulast=Cano&rft.aufirst=RJ&rft.au=Borucki, MK&rfr_id=info:sid/en.wikipedia.org:Lysinibacillus sphaericus" class="Z3988">
  5. ^ KRYCH, VIRGINIA K.; JOHNSON, JOHN L.; YOUSTEN, ALLAN A. (1980). "Deoxyribonucleic Acid Homologies Among Strains of Bacillus sphaericus". International Journal of Systematic and Evolutionary Microbiology. 30 (2): 476–484. doi:10.1099/00207713-30-2-476.476-484&rft.date=1980&rft_id=info:doi/10.1099/00207713-30-2-476&rft.aulast=KRYCH&rft.aufirst=VIRGINIA K.&rft.au=JOHNSON, JOHN L.&rft.au=YOUSTEN, ALLAN A.&rft_id=https://doi.org/10.1099%2F00207713-30-2-476&rfr_id=info:sid/en.wikipedia.org:Lysinibacillus sphaericus" class="Z3988">
  6. ^ Xu, Kai; Yuan, Zhiming; Rayner, Simon; Hu, Xiaomin (December 2015). "Genome comparison provides molecular insights into the phylogeny of the reassigned new genus Lysinibacillus". BMC Genomics. 16 (1): 140. doi:10.1186/s12864-015-1359-x. PMC 4363355. PMID 25888315.
  7. ^ "GTDB - Tree". gtdb.ecogenomic.org.
  8. ^ Bone, Leon W.; Tinelli, Regina (1987-12-01). "Trichostrongylus colubriformis: Larvicidal activity of toxic extracts from Bacillus sphaericus (strain 1593) spores". Experimental Parasitology. 64 (3): 514–516. doi:10.1016/0014-4894(87)90066-X. PMID 3678452.514-516&rft.date=1987-12-01&rft_id=info:doi/10.1016/0014-4894(87)90066-X&rft_id=info:pmid/3678452&rft.aulast=Bone&rft.aufirst=Leon W.&rft.au=Tinelli, Regina&rfr_id=info:sid/en.wikipedia.org:Lysinibacillus sphaericus" class="Z3988">
  9. ^ Baumann, P; Clark, M A; Baumann, L; Broadwell, A H (September 1991). "Bacillus sphaericus as a mosquito pathogen: properties of the organism and its toxins". Microbiological Reviews. 55 (3): 425–436. doi:10.1128/MR.55.3.425-436.1991. ISSN 0146-0749. PMC 372827. PMID 1682792.425-436&rft.date=1991-09&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC372827#id-name=PMC&rft.issn=0146-0749&rft_id=info:pmid/1682792&rft_id=info:doi/10.1128/MR.55.3.425-436.1991&rft.aulast=Baumann&rft.aufirst=P&rft.au=Clark, M A&rft.au=Baumann, L&rft.au=Broadwell, A H&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC372827&rfr_id=info:sid/en.wikipedia.org:Lysinibacillus sphaericus" class="Z3988">
  10. ^ Thanabalu, T; Porter, A G (November 1995). "Efficient expression of a 100-kilodalton mosquitocidal toxin in protease-deficient recombinant Bacillus sphaericus". Applied and Environmental Microbiology. 61 (11): 4031–4036. Bibcode:1995ApEnM..61.4031T. doi:10.1128/AEM.61.11.4031-4036.1995. ISSN 0099-2240. PMC 167711. PMID 8526518.4031-4036&rft.date=1995-11&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC167711#id-name=PMC&rft_id=info:bibcode/1995ApEnM..61.4031T&rft_id=info:pmid/8526518&rft_id=info:doi/10.1128/AEM.61.11.4031-4036.1995&rft.issn=0099-2240&rft.aulast=Thanabalu&rft.aufirst=T&rft.au=Porter, A G&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC167711&rfr_id=info:sid/en.wikipedia.org:Lysinibacillus sphaericus" class="Z3988">
  11. ^ "Revista Colombiana de Biotecnología". Revista Colombiana de Biotecnología. 2014. doi:10.15446/rev.colomb.biote. hdl:10495/7917.
  12. ^ Lozano, Lucía C.; Dussán, Jenny (2013-08-01). "Metal tolerance and larvicidal activity of Lysinibacillus sphaericus". World Journal of Microbiology and Biotechnology. 29 (8): 1383–1389. doi:10.1007/s11274-013-1301-9. ISSN 0959-3993. PMID 23504213. S2CID 30523002.1383-1389&rft.date=2013-08-01&rft.issn=0959-3993&rft_id=https://api.semanticscholar.org/CorpusID:30523002#id-name=S2CID&rft_id=info:pmid/23504213&rft_id=info:doi/10.1007/s11274-013-1301-9&rft.aulast=Lozano&rft.aufirst=Lucía C.&rft.au=Dussán, Jenny&rfr_id=info:sid/en.wikipedia.org:Lysinibacillus sphaericus" class="Z3988">
  13. ^ DESAI, C; JAIN, K; MADAMWAR, D (2008). "Evaluation of In vitro Cr(VI) reduction potential in cytosolic extracts of three indigenous Bacillus sp. isolated from Cr(VI) polluted industrial landfill". Bioresource Technology. 99 (14): 6059–6069. doi:10.1016/j.biortech.2007.12.046. ISSN 0960-8524. PMID 18255287.6059-6069&rft.date=2008&rft.issn=0960-8524&rft_id=info:pmid/18255287&rft_id=info:doi/10.1016/j.biortech.2007.12.046&rft.aulast=DESAI&rft.aufirst=C&rft.au=JAIN, K&rft.au=MADAMWAR, D&rfr_id=info:sid/en.wikipedia.org:Lysinibacillus sphaericus" class="Z3988">
  14. ^ Selenska-Pobell, Sonja; Panak, Petra; Miteva, Vanya; Boudakov, Ivo; Bernhard, Gert; Nitsche, Heino (1999-05-01). "Selective accumulation of heavy metals by three indigenous Bacillus strains, B. cereus, B. megaterium and B. sphaericus, from drain waters of a uranium waste pile". FEMS Microbiology Ecology. 29 (1): 59–67. doi:10.1111/j.1574-6941.1999.tb00598.x. ISSN 0168-6496.59-67&rft.date=1999-05-01&rft_id=info:doi/10.1111/j.1574-6941.1999.tb00598.x&rft.issn=0168-6496&rft.aulast=Selenska-Pobell&rft.aufirst=Sonja&rft.au=Panak, Petra&rft.au=Miteva, Vanya&rft.au=Boudakov, Ivo&rft.au=Bernhard, Gert&rft.au=Nitsche, Heino&rft_id=https://doi.org/10.1111%2Fj.1574-6941.1999.tb00598.x&rfr_id=info:sid/en.wikipedia.org:Lysinibacillus sphaericus" class="Z3988">
  15. ^ Sleytr, Uwe B; Györvary, Erika; Pum, Dietmar (2003-09-01). "Crystallization of S-layer protein lattices on surfaces and interfaces". Progress in Organic Coatings. Keystone 2002. 47 (3): 279–287. doi:10.1016/S0300-9440(03)00143-7.279-287&rft.date=2003-09-01&rft_id=info:doi/10.1016/S0300-9440(03)00143-7&rft.aulast=Sleytr&rft.aufirst=Uwe B&rft.au=Györvary, Erika&rft.au=Pum, Dietmar&rfr_id=info:sid/en.wikipedia.org:Lysinibacillus sphaericus" class="Z3988">
  16. ^ Velásquez, Lina; Dussan, Jenny (2009-08-15). "Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus". Journal of Hazardous Materials. 167 (1): 713–716. doi:10.1016/j.jhazmat.2009.01.044. PMID 19201532.713-716&rft.date=2009-08-15&rft_id=info:doi/10.1016/j.jhazmat.2009.01.044&rft_id=info:pmid/19201532&rft.aulast=Velásquez&rft.aufirst=Lina&rft.au=Dussan, Jenny&rfr_id=info:sid/en.wikipedia.org:Lysinibacillus sphaericus" class="Z3988">
  17. ^ Villegas-Torres, Maria F.; Bedoya-Reina, Oscar C.; Salazar, Camilo; Vives-Florez, Martha J.; Dussan, Jenny (2011-01-01). "Horizontal arsC gene transfer among microorganisms isolated from arsenic polluted soil". International Biodeterioration & Biodegradation. 65 (1): 147–152. doi:10.1016/j.ibiod.2010.10.007.147-152&rft.date=2011-01-01&rft_id=info:doi/10.1016/j.ibiod.2010.10.007&rft.aulast=Villegas-Torres&rft.aufirst=Maria F.&rft.au=Bedoya-Reina, Oscar C.&rft.au=Salazar, Camilo&rft.au=Vives-Florez, Martha J.&rft.au=Dussan, Jenny&rfr_id=info:sid/en.wikipedia.org:Lysinibacillus sphaericus" class="Z3988">
edit