List of topics named after Leonhard Euler

In mathematics and physics, many topics are named in honor of Swiss mathematician Leonhard Euler (1707–1783), who made many important discoveries and innovations. Many of these items named after Euler include their own unique function, equation, formula, identity, number (single or sequence), or other mathematical entity. Many of these entities have been given simple yet ambiguous names such as Euler's function, Euler's equation, and Euler's formula.

Leonhard Euler (1707–1783)

Euler's work touched upon so many fields that he is often the earliest written reference on a given matter. In an effort to avoid naming everything after Euler, some discoveries and theorems are attributed to the first person to have proved them after Euler.[1][2]

Conjectures

edit

Equations

edit

Usually, Euler's equation refers to one of (or a set of) differential equations (DEs). It is customary to classify them into ODEs and PDEs.

Otherwise, Euler's equation may refer to a non-differential equation, as in these three cases:

Ordinary differential equations

edit

Partial differential equations

edit

Formulas

edit

Functions

edit

Identities

edit

Numbers

edit

Theorems

edit

Laws

edit

Other things

edit

Topics by field of study

edit

Selected topics from above, grouped by subject, and additional topics from the fields of music and physical systems

Analysis: derivatives, integrals, and logarithms

edit

Geometry and spatial arrangement

edit

Graph theory

edit

Music

edit

Number theory

edit

Physical systems

edit

Polynomials

edit

See also

edit

Notes

edit
  1. ^ Richeson, David S. (2008). Euler's Gem: The polyhedron formula and the birth of topology (illustrated ed.). Princeton University Press. p. 86. ISBN 978-0-691-12677-7.
  2. ^ Edwards, Charles Henry; Penney, David E.; Calvis, David (2008). Differential equations and boundary value problems. Pearson Prentice Hall. pp. 443 (微分方程及边值问题, 2004 edition). ISBN 978-0-13-156107-6.
  3. ^ de Rochegude, Félix (1910). Promenades dans toutes les rues de Paris [Walks along all of the streets in Paris] (VIIIe arrondissement ed.). Hachette. p. 98.
  4. ^ Evans, Charles R.; Smarr, Larry L.; Wilson, James R. (1986). "Numerical Relativistic Gravitational Collapse with Spatial Time Slices". Astrophysical Radiation Hydrodynamics. Vol. 188. pp. 491–529. doi:10.1007/978-94-009-4754-2_15. ISBN 978-94-010-8612-7. Retrieved March 27, 2021.
  5. ^ Schoenberg (1973). "bibliography" (PDF). University of Wisconsin. Archived from the original (PDF) on 2011-05-22. Retrieved 2007-10-28.