In Euclidean plane geometry, Lester's theorem states that in any scalene triangle, the two Fermat points, the nine-point center, and the circumcenter lie on the same circle. The result is named after June Lester, who published it in 1997,[1] and the circle through these points was called the Lester circle by Clark Kimberling.[2] Lester proved the result by using the properties of complex numbers; subsequent authors have given elementary proofs[3][4][5][6], proofs using vector arithmetic,[7] and computerized proofs.[8] The center of the Lester circle is also a triangle center. It is the center designated as X(1116) in the Encyclopedia of Triangle Centers. [9] Recently, Peter Moses discovered 21 other triangle centers lie on the Lester circle. The points are numbered X(15535) – X(15555) in the Encyclopedia of Triangle Centers.[10]

The Fermat points , the center of the nine-point circle (light blue), and the circumcenter of the green triangle lie on the Lester circle (black).

Gibert's generalization

edit

In 2000, Bernard Gibert proposed a generalization of the Lester Theorem involving the Kiepert hyperbola of a triangle. His result can be stated as follows: Every circle with a diameter that is a chord of the Kiepert hyperbola and perpendicular to the triangle's Euler line passes through the Fermat points. [11][12]

Dao's generalizations

edit

Dao's first generalization

edit

In 2014, Dao Thanh Oai extended Gibert's result to every rectangular hyperbola. The generalization is as follows: Let   and   lie on one branch of a rectangular hyperbola, and let   and   be the two points on the hyperbola that are symmetrical about its center (antipodal points), where the tangents at these points are parallel to the line  . Let   and   be two points on the hyperbola where the tangents intersect at a point   on the line  . If the line   intersects   at  , and the perpendicular bisector of   intersects the hyperbola at   and  , then the six points  ,        , and   lie on a circle. When the rectangular hyperbola is the Kiepert hyperbola and   and   are the two Fermat points, Dao's generalization becomes Gibert's generalization. [12][13]

Dao's second generalization

edit

In 2015, Dao Thanh Oai proposed another generalization of the Lester circle, this time associated with the Neuberg cubic. It can be stated as follows: Let   be a point on the Neuberg cubic, and let   be the reflection of   in the line  , with   and   defined cyclically. The lines  ,  , and   are known to be concurrent at a point denoted as  . The four points  ,  ,  , and   lie on a circle. When   is the point  , it is known that  , making Dao's generalization a restatement of the Lester Theorem. [13][14][15][16]

See also

edit

References

edit
  1. ^ Lester, June A. (1997), "Triangles. III. Complex triangle functions", Aequationes Mathematicae, 53 (1–2): 4–35, doi:10.1007/BF02215963, MR 1436263, S2CID 1196671241–2&rft.pages=4-35&rft.date=1997&rft_id=https://mathscinet.ams.org/mathscinet-getitem?mr=1436263#id-name=MR&rft_id=https://api.semanticscholar.org/CorpusID:119667124#id-name=S2CID&rft_id=info:doi/10.1007/BF02215963&rft.aulast=Lester&rft.aufirst=June A.&rfr_id=info:sid/en.wikipedia.org:Lester's theorem" class="Z3988">
  2. ^ Kimberling, Clark (1996), "Lester circle", The Mathematics Teacher, 89 (1): 26, JSTOR 27969621
  3. ^ Shail, Ron (2001), "A proof of Lester's theorem", The Mathematical Gazette, 85 (503): 226–232, doi:10.2307/3622007, JSTOR 3622007, S2CID 125392368226-232&rft.date=2001&rft_id=https://api.semanticscholar.org/CorpusID:125392368#id-name=S2CID&rft_id=https://www.jstor.org/stable/3622007#id-name=JSTOR&rft_id=info:doi/10.2307/3622007&rft.aulast=Shail&rft.aufirst=Ron&rfr_id=info:sid/en.wikipedia.org:Lester's theorem" class="Z3988">
  4. ^ Rigby, John (2003), "A simple proof of Lester's theorem", The Mathematical Gazette, 87 (510): 444–452, doi:10.1017/S0025557200173620, JSTOR 3621279, S2CID 125214460444-452&rft.date=2003&rft_id=https://api.semanticscholar.org/CorpusID:125214460#id-name=S2CID&rft_id=https://www.jstor.org/stable/3621279#id-name=JSTOR&rft_id=info:doi/10.1017/S0025557200173620&rft.aulast=Rigby&rft.aufirst=John&rfr_id=info:sid/en.wikipedia.org:Lester's theorem" class="Z3988">
  5. ^ Scott, J. A. (2003), "Two more proofs of Lester's theorem", The Mathematical Gazette, 87 (510): 553–566, doi:10.1017/S0025557200173917, JSTOR 3621308, S2CID 125997675553-566&rft.date=2003&rft_id=https://api.semanticscholar.org/CorpusID:125997675#id-name=S2CID&rft_id=https://www.jstor.org/stable/3621308#id-name=JSTOR&rft_id=info:doi/10.1017/S0025557200173917&rft.aulast=Scott&rft.aufirst=J. A.&rfr_id=info:sid/en.wikipedia.org:Lester's theorem" class="Z3988">
  6. ^ Duff, Michael (2005), "A short projective proof of Lester's theorem", The Mathematical Gazette, 89 (516): 505–506, doi:10.1017/S0025557200178581, S2CID 125894605505-506&rft.date=2005&rft_id=info:doi/10.1017/S0025557200178581&rft_id=https://api.semanticscholar.org/CorpusID:125894605#id-name=S2CID&rft.aulast=Duff&rft.aufirst=Michael&rfr_id=info:sid/en.wikipedia.org:Lester's theorem" class="Z3988">
  7. ^ Dolan, Stan (2007), "Man versus computer", The Mathematical Gazette, 91 (522): 469–480, doi:10.1017/S0025557200182117, JSTOR 40378420, S2CID 126161757469-480&rft.date=2007&rft_id=https://api.semanticscholar.org/CorpusID:126161757#id-name=S2CID&rft_id=https://www.jstor.org/stable/40378420#id-name=JSTOR&rft_id=info:doi/10.1017/S0025557200182117&rft.aulast=Dolan&rft.aufirst=Stan&rfr_id=info:sid/en.wikipedia.org:Lester's theorem" class="Z3988">
  8. ^ Trott, Michael (1997), "Applying GroebnerBasis to three problems in geometry", Mathematica in Education and Research, 6 (1): 15–2815-28&rft.date=1997&rft.aulast=Trott&rft.aufirst=Michael&rft_id=http://library.wolfram.com/infocenter/Articles/1754/&rfr_id=info:sid/en.wikipedia.org:Lester's theorem" class="Z3988">
  9. ^ Clark Kimberling, X(1116) = CENTER OF THE LESTER CIRCLE in Encyclopedia of Triangle Centers
  10. ^ Peter Moses, Preamble before X(15535) in Encyclopedia of Triangle Centers
  11. ^ Paul Yiu, The circles of Lester, Evans, Parry, and their generalizations, Forum Geometricorum, volume 10, pages 175–209, ISSN 1534-1178
  12. ^ a b Dao Thanh Oai, A Simple Proof of Gibert’s Generalization of the Lester Circle Theorem, Forum Geometricorum, volume 14, pages 201–202, ISSN 1534-1178
  13. ^ a b Ngo Quang Duong, Generalization of the Lester circle, Global Journal of Advanced Research on Classical and Modern Geometries, Vol.10, (2021), Issue 1, pages 49–61, ISSN 2284-5569
  14. ^ Dao Thanh Oai, Generalizations of some famous classical Euclidean geometry theorems, International Journal of Computer Discovered Mathematics, Vol.1, (2016), Issue 3, pages 13–20, ISSN 2367-7775
  15. ^ Kimberling, X(7668) = POLE OF X(115)X(125) WITH RESPECT TO THE NINE-POINT CIRCLE in Encyclopedia of Triangle Centers
  16. ^ César Eliud Lozada, Preamble before X(42740) in Encyclopedia of Triangle Centers
edit