This article needs additional citations for verification. (August 2016) |
In mathematics, the Jacobian variety J(C) of a non-singular algebraic curve C of genus g is the moduli space of degree 0 line bundles. It is the connected component of the identity in the Picard group of C, hence an abelian variety.
Introduction
editThe Jacobian variety is named after Carl Gustav Jacobi, who proved the complete version of the Abel–Jacobi theorem, making the injectivity statement of Niels Abel into an isomorphism. It is a principally polarized abelian variety, of dimension g, and hence, over the complex numbers, it is a complex torus. If p is a point of C, then the curve C can be mapped to a subvariety of J with the given point p mapping to the identity of J, and C generates J as a group.
Construction for complex curves
editOver the complex numbers, the Jacobian variety can be realized as the quotient space V/L, where V is the dual of the vector space of all global holomorphic differentials on C and L is the lattice of all elements of V of the form
where γ is a closed path in C. In other words,
with embedded in via the above map. This can be done explicitly with the use of theta functions.[1]
The Jacobian of a curve over an arbitrary field was constructed by Weil (1948) as part of his proof of the Riemann hypothesis for curves over a finite field.
The Abel–Jacobi theorem states that the torus thus built is a variety, the classical Jacobian of a curve, that indeed parametrizes the degree 0 line bundles, that is, it can be identified with its Picard variety of degree 0 divisors modulo linear equivalence.
Algebraic structure
editAs a group, the Jacobian variety of a curve is isomorphic to the quotient of the group of divisors of degree zero by the subgroup of principal divisors, i.e., divisors of rational functions. This holds for fields that are not algebraically closed, provided one considers divisors and functions defined over that field.
Further notions
editTorelli's theorem states that a complex curve is determined by its Jacobian (with its polarization).
The Schottky problem asks which principally polarized abelian varieties are the Jacobians of curves.
The Picard variety, the Albanese variety, generalized Jacobian, and intermediate Jacobians are generalizations of the Jacobian for higher-dimensional varieties. For varieties of higher dimension the construction of the Jacobian variety as a quotient of the space of holomorphic 1-forms generalizes to give the Albanese variety, but in general this need not be isomorphic to the Picard variety.
See also
edit- Period matrix – period matrices are a useful technique for computing the Jacobian of a curve
- Hodge structure – these are generalizations of Jacobians
- Honda–Tate theorem – classifies abelian varieties over finite fields up to isogeny
- Intermediate Jacobian
References
edit- ^ Mumford, David (2007). Tata lectures on Theta I. Birkhäuser. ISBN 978-0-8176-4572-4.
Computation techniques
edit- Schindler, Bernhard (1993). "Period Matrices of hyperelliptic curves". Manuscripta Mathematica. 78 (4): 369–380. doi:10.1007/BF02599319. S2CID 122944746.369-380&rft.date=1993&rft_id=info:doi/10.1007/BF02599319&rft_id=https://api.semanticscholar.org/CorpusID:122944746#id-name=S2CID&rft.aulast=Schindler&rft.aufirst=Bernhard&rft_id=https://eudml.org/doc/155814&rfr_id=info:sid/en.wikipedia.org:Jacobian variety" class="Z3988">
- Anderson, Greg W. (2002). "Abeliants and their application to an elementary construction of Jacobians". Advances in Mathematics. 172 (2): 169–205. arXiv:math/0112321. doi:10.1016/S0001-8708(02)00024-5. S2CID 2458575.169-205&rft.date=2002&rft_id=info:arxiv/math/0112321&rft_id=https://api.semanticscholar.org/CorpusID:2458575#id-name=S2CID&rft_id=info:doi/10.1016/S0001-8708(02)50024-5&rft.aulast=Anderson&rft.aufirst=Greg W.&rft_id=https://doi.org/10.1016%2FS0001-8708%2802%2950024-5&rfr_id=info:sid/en.wikipedia.org:Jacobian variety" class="Z3988"> – techniques for constructing Jacobians
Isogeny classes
edit- Howe, Everett W. (2005). "Infinite Families of Pairs of Curves over Q with Isomorphic Jacobians". Journal of the London Mathematical Society. 72 (2): 327–350. arXiv:math/0304471. doi:10.1112/S0024610705006812. S2CID 5742703.327-350&rft.date=2005&rft_id=info:arxiv/math/0304471&rft_id=https://api.semanticscholar.org/CorpusID:5742703#id-name=S2CID&rft_id=info:doi/10.1112/S0024610705006812&rft.aulast=Howe&rft.aufirst=Everett W.&rfr_id=info:sid/en.wikipedia.org:Jacobian variety" class="Z3988">
- Chai, Ching-Li; Oort, Frans Oort (2012). "Abelian varieties isogenous to a Jacobian". Annals of Mathematics. 176: 589–635. doi:10.4007/annals.2012.176.1.11. S2CID 3153696.589-635&rft.date=2012&rft_id=info:doi/10.4007/annals.2012.176.1.11&rft_id=https://api.semanticscholar.org/CorpusID:3153696#id-name=S2CID&rft.aulast=Chai&rft.aufirst=Ching-Li&rft.au=Oort, Frans Oort&rft_id=https://doi.org/10.4007%2Fannals.2012.176.1.11&rfr_id=info:sid/en.wikipedia.org:Jacobian variety" class="Z3988">
- Abelian varieties isogenous to no Jacobian
Cryptography
editGeneral
edit- P. Griffiths; J. Harris (1994), Principles of Algebraic Geometry, Wiley Classics Library, Wiley Interscience, pp. 333–363, ISBN 0-471-05059-8333-363&rft.pub=Wiley Interscience&rft.date=1994&rft.isbn=0-471-05059-8&rft.au=P. Griffiths&rft.au=J. Harris&rfr_id=info:sid/en.wikipedia.org:Jacobian variety" class="Z3988">
- Jacobi, C.G.J. (1832). "Considerationes generales de transcendentibus Abelianis". Journal für die reine und angewandte Mathematik (Crelle's Journal). 1832 (9): 394–403. doi:10.1515/crll.1832.9.394. S2CID 120125760.394-403&rft.date=1832&rft_id=info:doi/10.1515/crll.1832.9.394&rft_id=https://api.semanticscholar.org/CorpusID:120125760#id-name=S2CID&rft.aulast=Jacobi&rft.aufirst=C.G.J.&rfr_id=info:sid/en.wikipedia.org:Jacobian variety" class="Z3988">
- Jacobi, C.G.J. (1835), "De functionibus duarum variabilium quadrupliciter periodicis, quibus theoria transcendentium abelianarum innititur", J. Reine Angew. Math., 13: 55–7855-78&rft.date=1835&rft.aulast=Jacobi&rft.aufirst=C.G.J.&rft_id=http://eudml.org/doc/146922&rfr_id=info:sid/en.wikipedia.org:Jacobian variety" class="Z3988">
- J.S. Milne (1986), "Jacobian Varieties", Arithmetic Geometry, New York: Springer-Verlag, pp. 167–212, ISBN 0-387-96311-1167-212&rft.pub=Springer-Verlag&rft.date=1986&rft.isbn=0-387-96311-1&rft.au=J.S. Milne&rfr_id=info:sid/en.wikipedia.org:Jacobian variety" class="Z3988">
- Mumford, David (1975), Curves and their Jacobians, The University of Michigan Press, Ann Arbor, Mich., MR 0419430
- Shokurov, V.V. (2001) [1994], "Jacobi variety", Encyclopedia of Mathematics, EMS Press
- Weil, André (1948), Variétés abéliennes et courbes algébriques, Paris: Hermann, MR 0029522, OCLC 826112
- Hartshorne, Robin (19 December 1977), Algebraic Geometry, New York: Springer, ISBN 0-387-90244-9