In mathematics, the intermediate Jacobian of a compact Kähler manifold or Hodge structure is a complex torus that is a common generalization of the Jacobian variety of a curve and the Picard variety and the Albanese variety. It is obtained by putting a complex structure on the torus for n odd. There are several different natural ways to put a complex structure on this torus, giving several different sorts of intermediate Jacobians, including one due to André Weil (1952) and one due to Phillip Griffiths (1968, 1968b). The ones constructed by Weil have natural polarizations if M is projective, and so are abelian varieties, while the ones constructed by Griffiths behave well under holomorphic deformations.

A complex structure on a real vector space is given by an automorphism I with square . The complex structures on are defined using the Hodge decomposition

On the Weil complex structure is multiplication by , while the Griffiths complex structure is multiplication by if and if . Both these complex structures map into itself and so defined complex structures on it.

For the intermediate Jacobian is the Picard variety, and for it is the Albanese variety. In these two extreme cases the constructions of Weil and Griffiths are equivalent.

Clemens & Griffiths (1972) used intermediate Jacobians to show that non-singular cubic threefolds are not rational, even though they are unirational.

See also

edit

References

edit
  • Clemens, C. Herbert; Griffiths, Phillip A. (1972), "The intermediate Jacobian of the cubic threefold", Annals of Mathematics, Second Series, 95 (2): 281–356, CiteSeerX 10.1.1.401.4550, doi:10.2307/1970801, ISSN 0003-486X, JSTOR 1970801, MR 0302652281-356&rft.date=1972&rft_id=https://www.jstor.org/stable/1970801#id-name=JSTOR&rft_id=info:doi/10.2307/1970801&rft_id=https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.401.4550#id-name=CiteSeerX&rft.issn=0003-486X&rft_id=https://mathscinet.ams.org/mathscinet-getitem?mr=0302652#id-name=MR&rft.aulast=Clemens&rft.aufirst=C. Herbert&rft.au=Griffiths, Phillip A.&rfr_id=info:sid/en.wikipedia.org:Intermediate Jacobian" class="Z3988">
  • Griffiths, Phillip A. (1968), "Periods of integrals on algebraic manifolds. I. Construction and properties of the modular varieties", American Journal of Mathematics, 90 (2): 568–626, doi:10.2307/2373545, ISSN 0002-9327, JSTOR 2373545, MR 0229641568-626&rft.date=1968&rft.issn=0002-9327&rft_id=https://mathscinet.ams.org/mathscinet-getitem?mr=0229641#id-name=MR&rft_id=https://www.jstor.org/stable/2373545#id-name=JSTOR&rft_id=info:doi/10.2307/2373545&rft.aulast=Griffiths&rft.aufirst=Phillip A.&rfr_id=info:sid/en.wikipedia.org:Intermediate Jacobian" class="Z3988">
  • Griffiths, Phillip A. (1968b), "Periods of integrals on algebraic manifolds. II. Local study of the period mapping", American Journal of Mathematics, 90 (3): 805–865, doi:10.2307/2373485, ISSN 0002-9327, JSTOR 2373485, MR 0233825805-865&rft.date=1968&rft.issn=0002-9327&rft_id=https://mathscinet.ams.org/mathscinet-getitem?mr=0233825#id-name=MR&rft_id=https://www.jstor.org/stable/2373485#id-name=JSTOR&rft_id=info:doi/10.2307/2373485&rft.aulast=Griffiths&rft.aufirst=Phillip A.&rfr_id=info:sid/en.wikipedia.org:Intermediate Jacobian" class="Z3988">
  • Griffiths, Phillip; Harris, Joseph (1994), Principles of algebraic geometry, Wiley Classics Library, New York: John Wiley & Sons, doi:10.1002/9781118032527, ISBN 978-0-471-05059-9, MR 1288523
  • Kulikov, Vik.S. (2001) [1994], "Intermediate Jacobian", Encyclopedia of Mathematics, EMS Press
  • Weil, André (1952), "On Picard varieties", American Journal of Mathematics, 74 (4): 865–894, doi:10.2307/2372230, ISSN 0002-9327, JSTOR 2372230, MR 0050330865-894&rft.date=1952&rft.issn=0002-9327&rft_id=https://mathscinet.ams.org/mathscinet-getitem?mr=0050330#id-name=MR&rft_id=https://www.jstor.org/stable/2372230#id-name=JSTOR&rft_id=info:doi/10.2307/2372230&rft.aulast=Weil&rft.aufirst=André&rfr_id=info:sid/en.wikipedia.org:Intermediate Jacobian" class="Z3988">