The heat shock protein Hsp20 family, also known as small heat shock proteins (sHSPs), is a family of heat shock proteins.

Hsp20/alpha crystallin family
Identifiers
SymbolHSP20
PfamPF00011
InterProIPR002068
PROSITEPDOC00791
SCOP21shs / SCOPe / SUPFAM
CDDcd06464
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
PDB2byuI:47-137 1gmeA:47-150 1shsF:46-147

Prokaryotic and eukaryotic organisms respond to heat shock or other environmental stress by inducing the synthesis of proteins collectively known as heat-shock proteins (hsp).[1] Amongst them is a family of proteins with an average molecular weight of 20 kDa, known as the hsp20 proteins.[2] These seem to act as protein chaperones that can protect other proteins against heat-induced denaturation and aggregation. Hsp20 proteins seem to form large heterooligomeric aggregates. Structurally, this family is characterised by the presence of a conserved C-terminal domain, alpha-crystallin domain, of about 100 residues. Recently, small heat shock proteins (sHSPs) were found in marine viruses (cyanophages).[3]

Function and regulation

edit

Hsp20, like all heat shock proteins, is in abundance when cells are under stressed conditions.[4] Hsp20 is known to be expressed in many human tissues, including the brain and heart.[5] Hsp20 has been studied extensively in cardiac myocytes and is known to act as a chaperon protein, binding to protein kinase 1 (PDK1) and allowing its nuclear transport.[6] In addition, the phosphorylation of hsp20 has been shown to effect the structure of cells cytoskeletons.[7] Due to hsp20 commonly forming dimers with itself when heated, its function of chaperoning can be greatly affected.[8]

Human small heat shock proteins

edit

References

edit
  1. ^ Lindquist S, Craig EA (1988). "The heat-shock proteins". Annu. Rev. Genet. 22: 631–677. doi:10.1146/annurev.ge.22.120188.003215. PMID 2853609.631-677&rft.date=1988&rft_id=info:doi/10.1146/annurev.ge.22.120188.003215&rft_id=info:pmid/2853609&rft.aulast=Lindquist&rft.aufirst=S&rft.au=Craig, EA&rfr_id=info:sid/en.wikipedia.org:Hsp20" class="Z3988">
  2. ^ Merck KB, de Jong WW, Bloemendal H, Groenen PJ (1994). "Structure and modifications of the junior chaperone alpha-crystallin. From lens transparency to molecular pathology". Eur. J. Biochem. 225 (1): 1–9. doi:10.1111/j.1432-1033.1994.00001.x. PMID 7925426.1-9&rft.date=1994&rft_id=info:doi/10.1111/j.1432-1033.1994.00001.x&rft_id=info:pmid/7925426&rft.aulast=Merck&rft.aufirst=KB&rft.au=de Jong, WW&rft.au=Bloemendal, H&rft.au=Groenen, PJ&rft_id=https://doi.org/10.1111%2Fj.1432-1033.1994.00001.x&rfr_id=info:sid/en.wikipedia.org:Hsp20" class="Z3988">
  3. ^ Maaroufi H, Tanguay RM (2013). "Analysis and phylogeny of small heat shock proteins from marine viruses and their cyanobacteria host". PLOS ONE. 8 (11): e81207. Bibcode:2013PLoSO...881207M. doi:10.1371/journal.pone.0081207. PMC 3827213. PMID 24265841.
  4. ^ LI, D.C.; Lan, Fan; Chen, Dian-Fu; Yang, Wei-Jun; Lu, Bo (2012). "Thermotolerance and molecular chaperone function of the small heat shock protein HSP20 from hyperthermophilic archaeon, Sulfolobus solfataricus P2". Cell Stress & Chaperones. 17 (1): 103–8. doi:10.1007/s12192-011-0289-z. PMC 3227843. PMID 21853411.103-8&rft.date=2012&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3227843#id-name=PMC&rft_id=info:pmid/21853411&rft_id=info:doi/10.1007/s12192-011-0289-z&rft.aulast=LI&rft.aufirst=D.C.&rft.au=Lan, Fan&rft.au=Chen, Dian-Fu&rft.au=Yang, Wei-Jun&rft.au=Lu, Bo&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3227843&rfr_id=info:sid/en.wikipedia.org:Hsp20" class="Z3988">
  5. ^ G.C, Fan; G, Chu; EG, Kranies (May 2005). "Hsp20 and its cardioprotection". Trends Cardiovasc. Med. 15 (4): 138–41. doi:10.1016/j.tcm.2005.05.004. PMID 16099377.138-41&rft.date=2005-05&rft_id=info:doi/10.1016/j.tcm.2005.05.004&rft_id=info:pmid/16099377&rft.aulast=G.C&rft.aufirst=Fan&rft.au=G, Chu&rft.au=EG, Kranies&rfr_id=info:sid/en.wikipedia.org:Hsp20" class="Z3988">
  6. ^ Yan Sin, Yuan; Currie, Susan; P Martin, Lauren; Wills, Tamara; S Baillie, George (2015). "Small heat shock protein 20 (Hsp20) facilitates nuclear import of protein kinase D 1 (PKD1) during cardiac hypertrophy". Cell Commun Signal. 13: 16. doi:10.1186/s12964-015-0094-x. PMC 4356135. PMID 25889640.
  7. ^ M. Dreiza, Catherine; M. Brophy, Colleen; Komalavilas, Padmini; J. Furnish, Elizabeth; Joshi, Lokesh; A. Pallero, Manuel; E. Murphy-Ullrich, Joanne; von Rechenberg, Moritz; J. Ho, Yew-Seng; Richardson, Bonnie; Xu, Nafei; Zhen, Yuejun; M. Peltier, John; Panitch, Alyssa (2005). "Transducible heat shock protein 20 (HSP20) phosphopeptide alters cytoskeletal dynamics". The FASEB Journal. 19 (2): 261–263. doi:10.1096/fj.04-2911fje. PMID 15598710. S2CID 28781928.261-263&rft.date=2005&rft_id=https://api.semanticscholar.org/CorpusID:28781928#id-name=S2CID&rft_id=info:pmid/15598710&rft_id=info:doi/10.1096/fj.04-2911fje&rft.aulast=M. Dreiza&rft.aufirst=Catherine&rft.au=M. Brophy, Colleen&rft.au=Komalavilas, Padmini&rft.au=J. Furnish, Elizabeth&rft.au=Joshi, Lokesh&rft.au=A. Pallero, Manuel&rft.au=E. Murphy-Ullrich, Joanne&rft.au=von Rechenberg, Moritz&rft.au=J. Ho, Yew-Seng&rft.au=Richardson, Bonnie&rft.au=Xu, Nafei&rft.au=Zhen, Yuejun&rft.au=M. Peltier, John&rft.au=Panitch, Alyssa&rft_id=https://doi.org/10.1096%2Ffj.04-2911fje&rfr_id=info:sid/en.wikipedia.org:Hsp20" class="Z3988">
  8. ^ van Montfort, RL; Basha, E; Friedrich, KL; Slingsby, C; Vierling, E (2001). "Crystal structure and assembly of a eukaryotic small heat shock protein". Nature Structural Biology. 8 (12): 1025–1030. doi:10.1038/nsb722. PMID 11702068. S2CID 618916.1025-1030&rft.date=2001&rft_id=https://api.semanticscholar.org/CorpusID:618916#id-name=S2CID&rft_id=info:pmid/11702068&rft_id=info:doi/10.1038/nsb722&rft.aulast=van Montfort&rft.aufirst=RL&rft.au=Basha, E&rft.au=Friedrich, KL&rft.au=Slingsby, C&rft.au=Vierling, E&rfr_id=info:sid/en.wikipedia.org:Hsp20" class="Z3988">
This article incorporates text from the public domain Pfam and InterPro: IPR002068