Head/tail breaks

(Redirected from Head/tail Breaks)

Head/tail breaks is a clustering algorithm for data with a heavy-tailed distribution such as power laws and lognormal distributions. The heavy-tailed distribution can be simply referred to the scaling pattern of far more small things than large ones, or alternatively numerous smallest, a very few largest, and some in between the smallest and largest. The classification is done through dividing things into large (or called the head) and small (or called the tail) things around the arithmetic mean or average, and then recursively going on for the division process for the large things or the head until the notion of far more small things than large ones is no longer valid, or with more or less similar things left only.[1] Head/tail breaks is not just for classification, but also for visualization of big data by keeping the head, since the head is self-similar to the whole. Head/tail breaks can be applied not only to vector data such as points, lines and polygons, but also to raster data like digital elevation model (DEM).

1024 cities that follow exactly Zipf's law, which implies that the first largest city is size 1, the second largest city is size 1/2, the third largest city is size 1/3, ... and the smallest city is size 1/1024. The left pattern is produced by head/tail breaks, while the right one by natural breaks, also known as Jenks natural breaks optimization.

Motivation

edit

The head/tail breaks is motivated by inability of conventional classification methods such as equal intervals, quantiles, geometric progressions, standard deviation, and natural breaks - commonly known as Jenks natural breaks optimization or k-means clustering to reveal the underlying scaling or living structure with the inherent hierarchy (or heterogeneity) characterized by the recurring notion of far more small things than large ones.[2][3] Note that the notion of far more small things than large one is not only referred to geometric property, but also to topological and semantic properties. In this connection, the notion should be interpreted as far more unpopular (or less-connected) things than popular (or well-connected) ones, or far more meaningless things than meaningful ones. Head/tail breaks uses the mean or average to dichotomize a dataset into small and large values, rather than to characterize classes by average values, which is unlike k-means clustering or natural breaks. Through the head/tail breaks, a dataset is seen as a living structure with an inherent hierarchy with far more smalls than larges, or recursively perceived as the head of the head of the head and so on. It opens up new avenues of analyzing data from a holistic and organic point of view while considering different types of scales and scaling in spatial analysis.[4]

Method

edit

Given some variable X that demonstrates a heavy-tailed distribution, there are far more small x than large ones. Take the average of all xi, and obtain the first mean m1. Then calculate the second mean for those xi greater than m1, and obtain m2. In the same recursive way, we can get m3 depending on whether the ending condition of no longer far more small x than large ones is met. For simplicity, we assume there are three means, m1, m2, and m3. This classification leads to four classes: [minimum, m1], (m1, m2], (m2, m3], (m3, maximum]. In general, it can be represented as a recursive function as follows:

 
An Illustration of the head/tail breaks classification with 10 numbers
    Recursive function Head/tail Breaks:
    Rank the input data values from the biggest to the smallest;
    Compute the mean value of the data
    Break the data (around the mean) into the head and the tail;  
    // the head for data values greater the mean
    // the tail for data values less the mean
    If (length(head)/length(data) <=40%):
        Head/tail Breaks(head);
    End Function

The resulting number of classes is referred to as ht-index, an alternative index to fractal dimension for characterizing complexity of fractals or geographic features: the higher the ht-index, the more complex the fractals.[5]

Threshold or its sensitivity

edit

The criterion to stop the iterative classification process using the head/tail breaks method is that the remaining data (i.e., the head part) are not heavy-tailed, or simply, the head part is no longer a minority (i.e., the proportion of the head part is no longer less than a threshold such as 40%). This threshold is suggested to be 40% by Jiang et al. (2013),[6] just as the codes above (i.e., (length/head)/length(data) ≤ 40%). This process is called head/tail breaks 1.0. But sometimes a larger threshold, for example 50% or more, can be used, as Jiang and Yin (2014)[5] noted in another article: "this condition can be relaxed for many geographic features, such as 50 percent or even more". However, all heads' percentage on average must be smaller than 40% (or 41, 42%), indicating far more small things than large ones. Many real-world data cannot be fit into a perfect long tailed distribution, therefore its threshold can be relaxed structurally. In head/tail breaks 2.0 the threshold only applies to the overall heads' percentage.[7] This means that the percentages of all heads related to the tails should be around 40% on average. Individual classes can have any percentage spit around the average, as long as this averages out as a whole. For example, if there is data distributed in such a way that it has a clearly defined head and tail during the first and second iteration (length(head)/(length(data)<20%) but a much less well defined long tailed distribution for the third iteration (60% in the head), head/tail breaks 2.0 allows the iteration to continue into the fourth iteration which can be distributed 30% head - 70% tail again and so on. As long as the overall threshold is not surpassed the head/tail breaks classification holds.

Rank-size plot and RA index

edit

A good tool to display the scaling pattern, or the heavy-tailed distribution, is the rank-size plot, which is a scatter plot to display a set of values according to their ranks. With this tool, a new index [8] termed as the ratio of areas (RA) in a rank-size plot was defined to characterize the scaling pattern. The RA index has been successfully used in the estimation of traffic conditions. However, the RA index can only be used as a complementary method to the ht-index, because it is ineffective to capture the scaling structure of geographic features.

Other Indices based on the head/tail breaks

edit

In addition to the ht-index, the following indices are also derived with the head/tail breaks.

  • CRG-index. It is developed as a more sensitive ht-index to capture the slight changes of geographic features.[9] In contrast to the ht-index, which is an integer, CRG-index is a real number.
  • Unified metrics. Two unified metrics (UM1 and UM2) were proposed in an AAAG paper [10] for characterizing the fractal nature of geographic features. One can be used to answer the question of “I know there are far more small things than large ones, but how small (or large) are these small (or large) things?”, whereas the other one to answer “I know there are far more small things than large ones, but how many more?”
  • Fht-index: It is a fractional ht-index, which is able to capture fractional hierarchy.[11] The fht-index might be of help for creating an intermediate scale between two consecutive map scales, leading to so called continuous map scales.

Applications

edit

Instead of more or less similar things, there are far more small things than large ones surrounding us. Given the ubiquity of the scaling pattern, head/tail breaks is found to be of use to statistical mapping, map generalization, cognitive mapping and even perception of beauty .[6][12][13] It helps visualize big data, since big data are likely to show the scaling property of far more small things than large ones. Essentially geographic phenomena can be scaleful or scale-free. Scaleful phenomena can be explained by conventional mathematical or geographical operations, but scale-free phenomena can not. Head/tail breaks can be used to characterize the scale-free phenomena, which are in the majority.[14] The visualization strategy is to recursively drop out the tail parts until the head parts are clear or visible enough.[15][16] In addition, it helps delineate cities or natural cities to be more precise from various geographic information such as street networks, social media geolocation data, and nighttime images.

Characterizing the imbalance

edit

As the head/tail breaks method can be used iteratively to obtain head parts of a data set, this method actually captures the underlying hierarchy of the data set. For example, if we divide the array (19, 8, 7, 6, 2, 1, 1, 1, 0) with the head/tail breaks method, we can get two head parts, i.e., the first head part (19, 8, 7, 6) and the second head part (19). These two head parts as well as the original array form a three-level hierarchy:

  • the 1st level (19),
  • the 2nd level (19, 8, 7, 6), and
  • the 3rd level (19, 8, 7, 6, 2, 1, 1, 1, 0).

The number of levels of the above-mentioned hierarchy is actually a characterization of the imbalance of the example array, and this number of levels has been termed as the ht-index.[5] With the ht-index, we are able to compare degrees of imbalance of two data sets. For example, the ht-index of the example array (19, 8, 7, 6, 2, 1, 1, 1, 0) is 3, and the ht-index of another array (19, 8, 8, 8, 8, 8, 8, 8, 8) is 2. Therefore, the degree of imbalance of the former array is higher than that of the latter array.

 
The left panel pattern contains 50,000 natural cities, which can be put into 7 hierarchical levels. It looks like a hair ball. Instead of showing all the 7 hierarchical levels, we show 4 top levels, by dropping out 3 low levels. Now with the right panel, the scaling pattern of far more small cities than large ones emerges. It is important to note that the right pattern (or the remaining part after dropping out the tails) is self-similar to the whole (or the left pattern). Thus the right pattern reflects the underlying structure of the left one, and enables us to see the whole.
 
The scaling pattern of US terrain surface is distorted by the natural breaks, but revealed by the head/tail breaks.

Delineating natural cities

edit

The use of fractals in modelling human geography has for a longer period been seen as useful in measuring the spatial distribution of human settlements.[17] Head/tail breaks can be used to do just that with a concept called natural cities. The term ‘natural cities’ refers to the human settlements or human activities in general on Earth's surface that are naturally or objectively defined and delineated from massive geographic information based on head/tail division rule, a non-recursive form of head/tail breaks.[18][19] Such geographic information could be from various sources, such as massive street junctions[19] and street ends, a massive number of street blocks, nighttime imagery and social media users’ locations etc. Based on these the different urban forms and configurations detected in cities can be derived.[20] Distinctive from conventional cities, the adjective ‘natural’ could be explained not only by the sources of natural cities, but also by the approach to derive them [1]. Natural cities are derived from a meaningful cutoff averaged from a massive number of units extracted from geographic information.[15] Those units vary according to different kinds of geographic information, for example the units could be area units for the street blocks and pixel values for the nighttime images.[21] A natural cities model has been created using ArcGIS model builder,[22] it follows the same process of deriving natural cities from location-based social media,[18] namely, building up huge triangular irregular network (TIN) based on the point features (street nodes in this case) and regarding the triangles which are smaller than a mean value as the natural cities. These natural cities can also be created from other open access information like OpenStreetMap and further be used as an alternative delineation of administrative boundaries.[23] Scaling law can also at the same time correctly be identified and the administrative borders can be created to respect this by the delineation of the natural cities.[24][25] This type methodology can help urban geographers and planners by correctly identifying the effective urban territorial scope of the areas they work in.[26]

Natural cities can vary depending on the scale on which the natural cities are delineated, which is why optimally they have to be based on data from the whole world. Due to that being computationally impossible, a country or county scale is suggested as alternative.[27] Due to the scale-free nature of natural cities and the data they are based on there are also possibilities to use the natural cities method for further measurements. One of the main advantages of natural cities is that it is derived bottom-up instead of top-down. That means that the borders are determined by the data of something physical rather than determined by an administrative government or administration.[28] For example by calculating the natural cities of a natural city recursively the dense areas within a natural city are identified. These can be seen as city centers for example. By using the natural cities method in this way further border delineations can be made dependent on the scale the natural cities were generated from.[29] Natural cities derived from smaller regional areas will provide less accurate but still usable results in certain analysis, like for example determining urban expansion over time.[30] As mentioned before though, optimally natural cities should be based on a massive amount of for example street intersections for an entire country or even the world. This is because natural cities are based on the wisdom of crowds thinking, which needs the biggest set of available data for the best results. Also note that the structure of natural cities can be considered to be fractal in nature.[31]

It is important when head/tail breaks are being used to generate natural cities, that the data is not aggregated afterwards. For example, the amount of generated natural cities can only be known after they are generated. It is not possible to use a pre-defined number of cities for an area or country and aggregate the results of the natural cities to administratively determined city borders. Naturally natural cities should follow Zipf's law, if they do not, the area is most likely too small, or data has probably been processed wrongly. An example of this is seen in a research where head/tail breaks were used to extract natural cities, but they were aggregated to administrative borders, which following that concluded that the cities do not follow Zipf's law.[32] This happens more often in science, where papers actually produce results which are actually false.[33]

Color rendering DEM

edit
 
The spiral layout illustrates eight levels of hierarchy derived from a fictitious dataset of 5,000 cities, whose sizes follow a rank-size distribution. Cities are represented by points using a spectrum colormap, ranging from red (largest) to blue (smallest).

Current color renderings for DEM or density map are essentially based on conventional classifications such as natural breaks or equal intervals, so they disproportionately exaggerate high elevations or high densities. As a matter of fact, there are not so many high elevations or high-density locations.[34] It was found that coloring based head/tail breaks is more favorable than those by other classifications.[35][36][2]

Mapping scaling hierarchy

edit

The pattern of far more small things than large ones frequently recurs in geographical data. A spiral layout inspired by the golden ratio or Fibonacci sequence can help visualize this recursive notion of scaling hierarchy and the different levels of scale.[37] [38]In other words, from the smallest to the largest scale, a map can be seen as a map of a map of a map, and so on.

Further applications

edit

Other applications of Head/tail breaks:

  • Serving as a method for efficiently estimating the absolute Boltzmann's entropy of numerical raster data[39]
  • Quantifying the multiscale representation of a polyline[40]
  • Increasing computational efficiency in data-flow analysis by emphasizing the head part of the flow dataset[41]
  • Temporal analysis of urban expansion related to the thermal environment[42]
  • Image analysis where anisotropy is measured in point patterns extracted with a digital pulse transform with the use of head/tail breaks[43]
  • Visualizing and analyzing spatial patterns in bilateral trade[44]
  • To identify urban function graphs,[45] note that this paper applies head/tail breaks on a Gaussian kernel density estimation which reduces the accuracy of the head/tail breaks method. Essentially a natural cities approach is taken but the initial data chosen to perform head/tail breaks on has been reduced beforehand. For a better representation of urban function graphs head/tail breaks may be applied as the first step in delineating these areas.
  • Analyzing structures or hotspots naturally occurring within data to highlight areas of interest (Based on natural cities).
    • (Over)Tourism analysis based on short term rentals (like AirBnB) by creating hotspots out of the distribution of rented out apartments.[46]
    • Measuring tourism intensification based on the fractal dimension delineated using natural cities[47]
    • Identifying urban hotspots based on taxi stops, where people are most likely to get out at major landmarks or public transport transfer areas. Head/tail breaks are applied to separate the less dense stops where few people exit, from the major stops where the most people exit.[48]
    • Determining traffic hotspots or congestion zones, which can be used to in turn determine road pricing. Natural cities is an effective approach when finding these areas.[49]
    • Using natural cities to identify the polycentric pattern of Chinese cities, i.e. identifying the multiple dense centers of activity found in cities.[50]
    • Determining how city growth affects the thermal environment in cities using natural cities as a measurement tool.[30]
    • Identifying resilient urban areas or systems.[51]
    • Identifying polycentric cities with night time imagery, which can be used to evaluate the urban development levels.[52]
    • Quantifying urban expansion by using POI data as indicators of built up areas.[53]
    • Detecting hierarchical crowd data with different clustering algorithms.[54]
    • Using twitter data obtained during the COVID-19 pandemic to analyze spatial hotspots with natural cities.[55]
    • Reducing carbon emissions by dividing urban spaces using head/tail breaks.[56]
    • Using remote sensing to identify core city expansion.[57]
    • Predicting urban growth with fractal dimension logistic curve modeling and head/tail breaks.[58]
  • Head/tail breaks can serve as a main indicator that phenomena are distributed long tailed and that Paretian thinking should favor Gaussian thinking in geographic spaces. For example within biodiversity and pedodiversity studies where there seem to be fractal relationships such as taxa-area relationships.[59] Complementary to this the polygons of soil and vegetation maps also show scaling within their structures. This can be identified and highlighted by using head/tail breaks.[60]
  • In image feature and texture extraction, certain algorithms like the discrete pulse transform, where LULU smoothing is used to extract the features, can be sped up by using head/tail breaks in the algorithm by separating large features and smaller features more effectively.[61]
  • By analysing hierarchies in urban patterns (i.e. Streets, building outlines), visual salience can be determined because it follows a similar principle, namely a scaling law, or long tailed distribution. Head/tail breaks are an aid in determining the hierarchies present because of the scaling nature of urban morphology and could be of further use when studying urban street network applications.[62] This is especially the case for accessibility analysis, combined with space syntax head/tail breaks allow for an in depth understanding of street network structure.[63][64]
  • Urban structures, like street networks have been proven to be fractal in nature. An important point to note is that this structure is not consisting of only one defined fractal, it is characterized by a multifractal complex network. This means that on different scales, the defined fractal can change. Head/tail breaks can be used to determine the structure of the complex network over different scales, as it adjusts based on the data with each new hierarchy.[65][66]
  • Head/tail breaks as a classification method can be used to visualize growth or spread patterns in for example a global pandemic, like the Covid-19 one. By using head/tail breaks, main spread events can be effectively mapped and visualized where locations with a high infection rate are highlighted specifically due to them being in the highest class.[67] The risk measurement model based on the head/tail breaks approach can describe the spatial and temporal evolution characteristics of the risk of COVID-19, and can better predict the risk trend of future epidemics in each city and identify the risk of future epidemics even during low incidence periods.[68]
  • Rock fracture networks are properties of rocks which are very important in rock engineering with applications in mining, shale gas development or slope stability. Because of the self-similarity characteristics of these fractures combined with the fractal nature they inhibit, head/tail breaks provide accurate measurements and analysis into these rock fracture networks.[69][70]
  • Classifying tourist attractions into most visited, least visited and something in between for further research into the optimal route of sightseeing busses.[71]
  • Measuring the heterogeneity of crime distribution quantitatively while simultaneously considering the statistical and geometrical characteristics of crime distribution.[72]
  • Examining the urban sustainability of socioeconomic and environmental dynamics. The natural cities serve as the basic urban form measures to objectively capture the spatial patterns of the sustainability change. [73]

Software implementation

edit

The following implementations are available under Free/Open Source Software licenses.

  • HT calculator: a winform application for obtaining related metrics of head/tail breaks applying on a single data array.
  • HT in JavaScript: a JavaScript implementation for applying head/tail breaks on a single data array.
  • HT Mapping tool: a function in the free plug-in Axwoman 6.3 to ArcMap 10.2 that conducts geo-data symbolization automatically based on the head/tail breaks classification.
  • HT in Python: Python and JavaScript code for the head/tail breaks algorithm. It works great for choropleth map coloring.
  • pysal.esda.mapclassify: Python classification schemes for choropleth mapping, including head/tail breaks map classification.
  • smoomapy 0.1.9: Brings smoothed maps through python.
  • Ht-index calculator: A PostgreSQL function for calculating ht-index (also see [74]).
  • RA calculator: Software for calculating the ratio of areas (RA) in a rank-size plot (also see [8]).
  • HT 2.0 calculator: An excel sheet calculator which calculates both head/tail breaks 1.0 and head/tail breaks 2.0 with a version for smaller datasets and a version for very large (binned) datasets.
  • classInt: R package that implements several methods for choosing univariate class intervals for mapping or other graphic purposes also includes head/tail breaks map classification.
  • Natural cities python script: For generating natural cities using open source python packages
  • Natural cities python script2: For generating natural cities from input point data using open source python packages

References

edit
  1. ^ Jiang, Bin (2013). "Head/Tail Breaks: A New Classification Scheme for Data with a Heavy-Tailed Distribution". The Professional Geographer. 65 (3): 482–494. arXiv:1209.2801. Bibcode:2013ProfG..65..482J. doi:10.1080/00330124.2012.700499. S2CID 119297992.482-494&rft.date=2013&rft_id=info:arxiv/1209.2801&rft_id=https://api.semanticscholar.org/CorpusID:119297992#id-name=S2CID&rft_id=info:doi/10.1080/00330124.2012.700499&rft_id=info:bibcode/2013ProfG..65..482J&rft.aulast=Jiang&rft.aufirst=Bin&rfr_id=info:sid/en.wikipedia.org:Head/tail breaks" class="Z3988">
  2. ^ Mac Carron, P.; Kaski, K.; Dunbar, R. (2016-10-01). "Calling Dunbar's numbers". Social Networks. 47: 151–155. arXiv:1604.02400. doi:10.1016/j.socnet.2016.06.003. ISSN 0378-8733. S2CID 14417148.151-155&rft.date=2016-10-01&rft_id=info:arxiv/1604.02400&rft_id=https://api.semanticscholar.org/CorpusID:14417148#id-name=S2CID&rft.issn=0378-8733&rft_id=info:doi/10.1016/j.socnet.2016.06.003&rft.aulast=Mac Carron&rft.aufirst=P.&rft.au=Kaski, K.&rft.au=Dunbar, R.&rft_id=https://www.sciencedirect.com/science/article/pii/S0378873316301095&rfr_id=info:sid/en.wikipedia.org:Head/tail breaks" class="Z3988">
  3. ^ Lux, Marian; Rinderle-Ma, Stefanie (2023-01-25). "DDCAL: Evenly Distributing Data into Low Variance Clusters Based on Iterative Feature Scaling". Journal of Classification. 40 (1): 106–144. doi:10.1007/s00357-022-09428-6. ISSN 1432-1343. PMC 9873542. PMID 36713890.106-144&rft.date=2023-01-25&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9873542#id-name=PMC&rft.issn=1432-1343&rft_id=info:pmid/36713890&rft_id=info:doi/10.1007/s00357-022-09428-6&rft.aulast=Lux&rft.aufirst=Marian&rft.au=Rinderle-Ma, Stefanie&rft_id=https://doi.org/10.1007/s00357-022-09428-6&rfr_id=info:sid/en.wikipedia.org:Head/tail breaks" class="Z3988">
  4. ^ Oshan, Taylor M.; Wolf, Levi J.; Sachdeva, Mehak; Bardin, Sarah; Fotheringham, A. Stewart (2022-06-09). "A scoping review on the multiplicity of scale in spatial analysis". Journal of Geographical Systems. 24 (3): 293–324. Bibcode:2022JGS....24..293O. doi:10.1007/s10109-022-00384-8. ISSN 1435-8639. S2CID 246957819.293-324&rft.date=2022-06-09&rft_id=info:doi/10.1007/s10109-022-00384-8&rft_id=https://api.semanticscholar.org/CorpusID:246957819#id-name=S2CID&rft.issn=1435-8639&rft_id=info:bibcode/2022JGS....24..293O&rft.aulast=Oshan&rft.aufirst=Taylor M.&rft.au=Wolf, Levi J.&rft.au=Sachdeva, Mehak&rft.au=Bardin, Sarah&rft.au=Fotheringham, A. Stewart&rft_id=https://doi.org/10.1007%2Fs10109-022-00384-8&rfr_id=info:sid/en.wikipedia.org:Head/tail breaks" class="Z3988">
  5. ^ a b c Jiang, Bin; Yin, Junjun (2014). "Ht-Index for Quantifying the Fractal or Scaling Structure of Geographic Features". Annals of the Association of American Geographers. 104 (3): 530–540. arXiv:1305.0883. doi:10.1080/00045608.2013.834239. S2CID 62816469.530-540&rft.date=2014&rft_id=info:arxiv/1305.0883&rft_id=https://api.semanticscholar.org/CorpusID:62816469#id-name=S2CID&rft_id=info:doi/10.1080/00045608.2013.834239&rft.aulast=Jiang&rft.aufirst=Bin&rft.au=Yin, Junjun&rfr_id=info:sid/en.wikipedia.org:Head/tail breaks" class="Z3988">
  6. ^ a b Jiang, Bin; Liu, Xintao; Jia, Tao (2013). "Scaling of Geographic Space as a Universal Rule for Map Generalization". Annals of the Association of American Geographers. 103 (4): 844–855. arXiv:1102.1561. doi:10.1080/00045608.2013.765773. S2CID 119257295.844-855&rft.date=2013&rft_id=info:arxiv/1102.1561&rft_id=https://api.semanticscholar.org/CorpusID:119257295#id-name=S2CID&rft_id=info:doi/10.1080/00045608.2013.765773&rft.aulast=Jiang&rft.aufirst=Bin&rft.au=Liu, Xintao&rft.au=Jia, Tao&rfr_id=info:sid/en.wikipedia.org:Head/tail breaks" class="Z3988">
  7. ^ Jiang, Bin (2019). "A Recursive Definition of Goodness of Space for Bridging the Concepts of Space and Place for Sustainability". Sustainability. 11 (15): 4091. arXiv:1909.01073. doi:10.3390/su11154091. S2CID 199374168.
  8. ^ a b Gao, Peichao; Liu, Zhao; Tian, Kun; Liu, Gang (2016-03-10). "Characterizing Traffic Conditions from the Perspective of Spatial-Temporal Heterogeneity". ISPRS International Journal of Geo-Information. 5 (3): 34. Bibcode:2016IJGI....5...34G. doi:10.3390/ijgi5030034. hdl:10397/61225.
  9. ^ Gao, Peichao; Liu, Zhao; Xie, Meihui; Tian, Kun; Liu, Gang (2016-10-01). "CRG Index: A More Sensitive Ht-Index for Enabling Dynamic Views of Geographic Features". The Professional Geographer. 68 (4): 533–545. Bibcode:2016ProfG..68..533G. doi:10.1080/00330124.2015.1099448. hdl:10397/66867. ISSN 0033-0124. S2CID 14967387.533-545&rft.date=2016-10-01&rft_id=info:hdl/10397/66867&rft_id=https://api.semanticscholar.org/CorpusID:14967387#id-name=S2CID&rft_id=info:bibcode/2016ProfG..68..533G&rft.issn=0033-0124&rft_id=info:doi/10.1080/00330124.2015.1099448&rft.aulast=Gao&rft.aufirst=Peichao&rft.au=Liu, Zhao&rft.au=Xie, Meihui&rft.au=Tian, Kun&rft.au=Liu, Gang&rfr_id=info:sid/en.wikipedia.org:Head/tail breaks" class="Z3988">
  10. ^ Gao, Peichao; Liu, Zhao; Liu, Gang; Zhao, Hongrui; Xie, Xiaoxiao (2017-06-02). "Unified Metrics for Characterizing the Fractal Nature of Geographic Features". Annals of the American Association of Geographers. 107 (6): 1315–1331. Bibcode:2017AAAG..107.1315G. doi:10.1080/24694452.2017.1310022. ISSN 2469-4452. S2CID 134468607.1315-1331&rft.date=2017-06-02&rft_id=info:doi/10.1080/24694452.2017.1310022&rft_id=https://api.semanticscholar.org/CorpusID:134468607#id-name=S2CID&rft.issn=2469-4452&rft_id=info:bibcode/2017AAAG..107.1315G&rft.aulast=Gao&rft.aufirst=Peichao&rft.au=Liu, Zhao&rft.au=Liu, Gang&rft.au=Zhao, Hongrui&rft.au=Xie, Xiaoxiao&rfr_id=info:sid/en.wikipedia.org:Head/tail breaks" class="Z3988">
  11. ^ Jiang, Bin; Ma, Ding (2017). "How complex is a fractal? Head/tail breaks and fractional hierarchy". Journal of Geovisualization and Spatial Analysis. 2: xx–xx. Preprint. arXiv:1703.00814. doi:10.1007/s41651-017-0009-z. S2CID 119466375.
  12. ^ Jiang, Bin (2013). "The Image of the City out of the Underlying Scaling of City Artifacts or Locations". Annals of the Association of American Geographers. 103 (6): 1552–1566. arXiv:1209.1112. doi:10.1080/00045608.2013.779503. S2CID 119227287.1552-1566&rft.date=2013&rft_id=info:arxiv/1209.1112&rft_id=https://api.semanticscholar.org/CorpusID:119227287#id-name=S2CID&rft_id=info:doi/10.1080/00045608.2013.779503&rft.aulast=Jiang&rft.aufirst=Bin&rfr_id=info:sid/en.wikipedia.org:Head/tail breaks" class="Z3988">
  13. ^ Jiang, Bin; Sui, Daniel Z. (2014). "A New Kind of Beauty Out of the Underlying Scaling of Geographic Space". The Professional Geographer. 66 (4): 676–686. arXiv:1303.7303. Bibcode:2014ProfG..66..676J. doi:10.1080/00330124.2013.852037. S2CID 119213099.676-686&rft.date=2014&rft_id=info:arxiv/1303.7303&rft_id=https://api.semanticscholar.org/CorpusID:119213099#id-name=S2CID&rft_id=info:doi/10.1080/00330124.2013.852037&rft_id=info:bibcode/2014ProfG..66..676J&rft.aulast=Jiang&rft.aufirst=Bin&rft.au=Sui, Daniel Z.&rfr_id=info:sid/en.wikipedia.org:Head/tail breaks" class="Z3988">
  14. ^ Chen, Yanguang (June 2021). "Characteristic Scales, Scaling, and Geospatial Analysis". Cartographica: The International Journal for Geographic Information and Geovisualization. 56 (2): 91–105. arXiv:2001.09819. doi:10.3138/cart-2020-0001. ISSN 0317-7173. S2CID 220546091.91-105&rft.date=2021-06&rft_id=info:arxiv/2001.09819&rft_id=https://api.semanticscholar.org/CorpusID:220546091#id-name=S2CID&rft.issn=0317-7173&rft_id=info:doi/10.3138/cart-2020-0001&rft.aulast=Chen&rft.aufirst=Yanguang&rft_id=https://utpjournals.press/doi/10.3138/cart-2020-0001&rfr_id=info:sid/en.wikipedia.org:Head/tail breaks" class="Z3988">
  15. ^ a b Jiang, Bin (2015). "Head/Tail breaks for visualization of city structure and dynamics". Cities. 43: 69–77. arXiv:1501.03046. doi:10.1016/j.cities.2014.11.013. S2CID 119221425.69-77&rft.date=2015&rft_id=info:arxiv/1501.03046&rft_id=https://api.semanticscholar.org/CorpusID:119221425#id-name=S2CID&rft_id=info:doi/10.1016/j.cities.2014.11.013&rft.aulast=Jiang&rft.aufirst=Bin&rfr_id=info:sid/en.wikipedia.org:Head/tail breaks" class="Z3988">
  16. ^ Wu, Jou-Hsuan (2015). Examining the New Kind of Beauty Using the Human Being as a Measuring Instrument.
  17. ^ Tannier, Cécile (2024-08-27). Fractal Geometry in Human Geography and Planning (1 ed.). Wiley. doi:10.1002/9781394306565.ch2. ISBN 978-1-78945-159-7.
  18. ^ a b Jiang, Bin; Miao, Yufan (2015). "The Evolution of Natural Cities from the Perspective of Location-Based Social Media". The Professional Geographer. 67 (2): 295–306. arXiv:1401.6756. Bibcode:2015ProfG..67..295J. doi:10.1080/00330124.2014.968886. S2CID 119191062.295-306&rft.date=2015&rft_id=info:arxiv/1401.6756&rft_id=https://api.semanticscholar.org/CorpusID:119191062#id-name=S2CID&rft_id=info:doi/10.1080/00330124.2014.968886&rft_id=info:bibcode/2015ProfG..67..295J&rft.aulast=Jiang&rft.aufirst=Bin&rft.au=Miao, Yufan&rfr_id=info:sid/en.wikipedia.org:Head/tail breaks" class="Z3988">
  19. ^ a b Long, Ying (2016). "Redefining Chinese city system with emerging new data". Applied Geography. 75: 36–48. Bibcode:2016AppGe..75...36L. doi:10.1016/j.apgeog.2016.08.002.36-48&rft.date=2016&rft_id=info:doi/10.1016/j.apgeog.2016.08.002&rft_id=info:bibcode/2016AppGe..75...36L&rft.aulast=Long&rft.aufirst=Ying&rfr_id=info:sid/en.wikipedia.org:Head/tail breaks" class="Z3988">
  20. ^ Song, Yongze; Long, Ying; Wu, Peng; Wang, Xiangyu (2018-12-02). "Are all cities with similar urban form or not? Redefining cities with ubiquitous points of interest and evaluating them with indicators at city and block levels in China". International Journal of Geographical Information Science. 32 (12): 2447–2476. Bibcode:2018IJGIS..32.2447S. doi:10.1080/13658816.2018.1511793. ISSN 1365-8816. S2CID 52926942.2447-2476&rft.date=2018-12-02&rft_id=info:doi/10.1080/13658816.2018.1511793&rft_id=https://api.semanticscholar.org/CorpusID:52926942#id-name=S2CID&rft.issn=1365-8816&rft_id=info:bibcode/2018IJGIS..32.2447S&rft.aulast=Song&rft.aufirst=Yongze&rft.au=Long, Ying&rft.au=Wu, Peng&rft.au=Wang, Xiangyu&rft_id=https://doi.org/10.1080/13658816.2018.1511793&rfr_id=info:sid/en.wikipedia.org:Head/tail breaks" class="Z3988">
  21. ^ Yang, Zhiwei; Chen, Yingbiao; Guo, Guanhua; Zheng, Zihao; Wu, Zhifeng (2021-08-01). "Using nighttime light data to identify the structure of polycentric cities and evaluate urban centers". Science of the Total Environment. 780: 146586. Bibcode:2021ScTEn.78046586Y. doi:10.1016/j.scitotenv.2021.146586. ISSN 0048-9697. PMID 33765471. S2CID 232366838.
  22. ^ Ren, Zheng (2016). "Natural cities model in ArcGIS", http://www.arcgis.com/home/item.html?id=47b1d6fdd1984a6fae916af389cdc57d.
  23. ^ Xiao, Zhiyang; Peng, Zhenhan; Yu, Zidong; Liu, Xintao (2023). "Generating Natural Cities Using 3D Road Network to Explore Living Structure: A Case Study in Hong Kong". Smart Cities. 6 (3): 1485–1506. doi:10.3390/smartcities6030070. hdl:10397/108699. ISSN 2624-6511.1485-1506&rft.date=2023&rft_id=info:hdl/10397/108699&rft.issn=2624-6511&rft_id=info:doi/10.3390/smartcities6030070&rft.aulast=Xiao&rft.aufirst=Zhiyang&rft.au=Peng, Zhenhan&rft.au=Yu, Zidong&rft.au=Liu, Xintao&rft_id=https://doi.org/10.3390%2Fsmartcities6030070&rfr_id=info:sid/en.wikipedia.org:Head/tail breaks" class="Z3988">
  24. ^ Alvioli, Massimiliano (2020). "Comparative study of delineation of urban areas using imperviousness products and open data". In Massimiliano Alvioli; Ivan Marchesini; Laura Melelli; Peter Guth (eds.). Proceedings of the Geomorphometry 2020 Conference. Vol. 1. IRPI CNR. pp. 1–4. doi:10.30437/GEOMORPHOMETRY2020_1.1-4&rft.pub=IRPI CNR&rft.date=2020&rft_id=info:doi/10.30437/GEOMORPHOMETRY2020_1&rft.aulast=Alvioli&rft.aufirst=Massimiliano&rfr_id=info:sid/en.wikipedia.org:Head/tail breaks" class="Z3988">
  25. ^ Alvioli, Massimiliano (2020-12-01). "Administrative boundaries and urban areas in Italy: A perspective from scaling laws". Landscape and Urban Planning. 204: 103906. Bibcode:2020LUrbP.20403906A. doi:10.1016/j.landurbplan.2020.103906. ISSN 0169-2046. PMC 7424309. PMID 32834266.
  26. ^ Kong, Liang; He, Zhengwei; Chen, Zhongsheng; Luo, Mingliang; Du, Zhong; Zhu, Fuquan; He, Li (April 2021). "Spatial Distribution and Morphological Identification of Regional Urban Settlements Based on Road Intersections". ISPRS International Journal of Geo-Information. 10 (4): 201. Bibcode:2021IJGI...10..201K. doi:10.3390/ijgi10040201.
  27. ^ Montero, Gaëtan; Tannier, Cécile; Thomas, Isabelle (2021-01-12). "Delineation of cities based on scaling properties of urban patterns: a comparison of three methods". International Journal of Geographical Information Science. 35 (5): 919–947. Bibcode:2021IJGIS..35..919M. doi:10.1080/13658816.2020.1817462. ISSN 1365-8816. S2CID 233302662.919-947&rft.date=2021-01-12&rft_id=info:doi/10.1080/13658816.2020.1817462&rft_id=https://api.semanticscholar.org/CorpusID:233302662#id-name=S2CID&rft.issn=1365-8816&rft_id=info:bibcode/2021IJGIS..35..919M&rft.aulast=Montero&rft.aufirst=Gaëtan&rft.au=Tannier, Cécile&rft.au=Thomas, Isabelle&rft_id=https://hal.science/hal-03113934&rfr_id=info:sid/en.wikipedia.org:Head/tail breaks" class="Z3988">
  28. ^ Usui, Hiroyuki (2019-09-01). "A bottom-up approach for delineating urban areas minimizing the connection cost of built clusters: Comparison with top-down-based densely inhabited districts". Computers, Environment and Urban Systems. 77: 101363. Bibcode:2019CEUS...7701363U. doi:10.1016/j.compenvurbsys.2019.101363. ISSN 0198-9715. S2CID 199101138.
  29. ^ de Rijke, Chris A.; Macassa, Gloria; Sandberg, Mats; Jiang, Bin (November 2020). "Living Structure as an Empirical Measurement of City Morphology". ISPRS International Journal of Geo-Information. 9 (11): 677. Bibcode:2020IJGI....9..677D. doi:10.3390/ijgi9110677.
  30. ^ a b Yang, Zhiwei; Chen, Yingbiao; Wu, Zhifeng (2021-07-01). "How urban expansion affects the thermal environment? A study of the impact of natural cities on the thermal field value and footprint of thermal environment". Ecological Indicators. 126: 107632. Bibcode:2021EcInd.12607632Y. doi:10.1016/j.ecolind.2021.107632. ISSN 1470-160X.
  31. ^ Zhang, Hong; Lan, Tian; Li, Zhilin (2021-09-08). "Fractal evolution of urban street networks in form and structure: a case study of Hong Kong". International Journal of Geographical Information Science. 36 (6): 1100–1118. doi:10.1080/13658816.2021.1974451. ISSN 1365-8816. S2CID 239633141.1100-1118&rft.date=2021-09-08&rft_id=https://api.semanticscholar.org/CorpusID:239633141#id-name=S2CID&rft.issn=1365-8816&rft_id=info:doi/10.1080/13658816.2021.1974451&rft.aulast=Zhang&rft.aufirst=Hong&rft.au=Lan, Tian&rft.au=Li, Zhilin&rft_id=https://doi.org/10.1080/13658816.2021.1974451&rfr_id=info:sid/en.wikipedia.org:Head/tail breaks" class="Z3988">
  32. ^ Sun, Xiangdong; Yuan, Ouyang; Xu, Zhao; Yin, Yanhui; Liu, Qian; Wu, Ling (2021-07-01). "Did Zipf's Law hold for Chinese cities and why? Evidence from multi-source data". Land Use Policy. 106: 105460. Bibcode:2021LUPol.10605460S. doi:10.1016/j.landusepol.2021.105460. ISSN 0264-8377. S2CID 235513633.
  33. ^ Ioannidis, John P. A. (2005-08-30). "Why Most Published Research Findings Are False". PLOS Medicine. 2 (8): e124. doi:10.1371/journal.pmed.0020124. ISSN 1549-1676. PMC 1182327. PMID 16060722.
  34. ^ Jiang, Bin (2015). "Geospatial analysis requires a different way of thinking: The problem of spatial heterogeneity". GeoJournal. 80 (1): 1–13. arXiv:1401.5889. Bibcode:2015GeoJo..80....1J. doi:10.1007/s10708-014-9537-y. JSTOR 24432599. S2CID 119248806.1-13&rft.date=2015&rft_id=https://www.jstor.org/stable/24432599#id-name=JSTOR&rft_id=info:bibcode/2015GeoJo..80....1J&rft_id=info:arxiv/1401.5889&rft_id=info:doi/10.1007/s10708-014-9537-y&rft_id=https://api.semanticscholar.org/CorpusID:119248806#id-name=S2CID&rft.aulast=Jiang&rft.aufirst=Bin&rfr_id=info:sid/en.wikipedia.org:Head/tail breaks" class="Z3988">
  35. ^ Wu, Jou-Hsuan (2015). "Examining the new kind of beauty using the human being as a measuring instrument", http://www.diva-portal.org/smash/get/diva2:805296/FULLTEXT01.pdf.
  36. ^ Lin, Yue (2013). A Comparison Study on Natural and Head/tail Breaks Involving Digital Elevation Models.
  37. ^ Jiang, Bin (2015). "The fractal nature of maps and mapping". International Journal of Geographical Information Science. 29 (1): 159–174. arXiv:1406.5410. doi:10.1080/13658816.2014.953165.159-174&rft.date=2015&rft_id=info:arxiv/1406.5410&rft_id=info:doi/10.1080/13658816.2014.953165&rft.aulast=Jiang&rft.aufirst=Bin&rfr_id=info:sid/en.wikipedia.org:Head/tail breaks" class="Z3988">
  38. ^ Jiang, Bin; de Rijke, Chris (2022). "Representing geographic space as a hierarchy of recursively defined subspaces for computing the degree of order". Computers, Environment and Urban Systems. 92: 101750. arXiv:2201.08211. doi:10.1016/j.compenvurbsys.2021.101750.
  39. ^ Zhang, Hong; Wu, Zhiwei (February 2020). "A Head/Tail Breaks-Based Method for Efficiently Estimating the Absolute Boltzmann Entropy of Numerical Raster Data". ISPRS International Journal of Geo-Information. 9 (2): 103. Bibcode:2020IJGI....9..103Z. doi:10.3390/ijgi9020103.
  40. ^ Liu, Pengcheng; Xiao, Tianyuan; Xiao, Jia; Ai, Tinghua (2020-04-22). "A multi-scale representation model of polyline based on head/tail breaks". International Journal of Geographical Information Science. 34 (11): 2275–2295. Bibcode:2020IJGIS..34.2275L. doi:10.1080/13658816.2020.1753203. ISSN 1365-8816. S2CID 219075004.2275-2295&rft.date=2020-04-22&rft_id=info:doi/10.1080/13658816.2020.1753203&rft_id=https://api.semanticscholar.org/CorpusID:219075004#id-name=S2CID&rft.issn=1365-8816&rft_id=info:bibcode/2020IJGIS..34.2275L&rft.aulast=Liu&rft.aufirst=Pengcheng&rft.au=Xiao, Tianyuan&rft.au=Xiao, Jia&rft.au=Ai, Tinghua&rfr_id=info:sid/en.wikipedia.org:Head/tail breaks" class="Z3988">
  41. ^ Tao, Ran; Gong, Zhaoya; Ma, Qiwei; Thill, Jean-Claude (May 2020). "Boosting Computational Effectiveness in Big Spatial Flow Data Analysis with Intelligent Data Reduction". ISPRS International Journal of Geo-Information. 9 (5): 299. Bibcode:2020IJGI....9..299T. doi:10.3390/ijgi9050299.
  42. ^ Yang, Zhiwei; Chen, Yingbiao; Wu, Zhifeng; Qian, Qinglan; Zheng, Zihao; Huang, Qingyao (2019-09-01). "Spatial heterogeneity of the thermal environment based on the urban expansion of natural cities using open data in Guangzhou, China". Ecological Indicators. 104: 524–534. Bibcode:2019EcInd.104..524Y. doi:10.1016/j.ecolind.2019.05.032. ISSN 1470-160X. S2CID 182075528.524-534&rft.date=2019-09-01&rft_id=info:doi/10.1016/j.ecolind.2019.05.032&rft_id=https://api.semanticscholar.org/CorpusID:182075528#id-name=S2CID&rft.issn=1470-160X&rft_id=info:bibcode/2019EcInd.104..524Y&rft.aulast=Yang&rft.aufirst=Zhiwei&rft.au=Chen, Yingbiao&rft.au=Wu, Zhifeng&rft.au=Qian, Qinglan&rft.au=Zheng, Zihao&rft.au=Huang, Qingyao&rfr_id=info:sid/en.wikipedia.org:Head/tail breaks" class="Z3988">
  43. ^ Fabris-Rotelli, I.; Stein, A. (2020-05-26). "Use of fractals to measure anisotropy in point patterns extracted with the DPT of an image". Spatial Statistics. 42: 100452. doi:10.1016/j.spasta.2020.100452. ISSN 2211-6753. S2CID 219785078.
  44. ^ Ye, Sijing; Song, Changqing; Cheng, Changxiu; Shen, Shi; Gao, Peichao; Zhang, Ting; Chen, Xiaoqiang; Wang, Yuanhui; Wan, Changjun (June 2020). "Digital Trade Feature Map: A New Method for Visualization and Analysis of Spatial Patterns in Bilateral Trade". ISPRS International Journal of Geo-Information. 9 (6): 363. Bibcode:2020IJGI....9..363Y. doi:10.3390/ijgi9060363.
  45. ^ Chen, Yimin; Chen, Xinyue; Liu, Zihui; Li, Xia (2020-02-01). "Understanding the spatial organization of urban functions based on co-location patterns mining: A comparative analysis for 25 Chinese cities". Cities. 97: 102563. doi:10.1016/j.cities.2019.102563. ISSN 0264-2751. S2CID 214502259.
  46. ^ Celata, Filippo; Romano, Antonello (2020-07-07). "Overtourism and online short-term rental platforms in Italian cities". Journal of Sustainable Tourism. 30 (5): 1020–1039. doi:10.1080/09669582.2020.1788568. hdl:11573/1426861. ISSN 0966-9582. S2CID 225551428.1020-1039&rft.date=2020-07-07&rft_id=info:hdl/11573/1426861&rft_id=https://api.semanticscholar.org/CorpusID:225551428#id-name=S2CID&rft.issn=0966-9582&rft_id=info:doi/10.1080/09669582.2020.1788568&rft.aulast=Celata&rft.aufirst=Filippo&rft.au=Romano, Antonello&rft_id=https://doi.org/10.1080%2F09669582.2020.1788568&rfr_id=info:sid/en.wikipedia.org:Head/tail breaks" class="Z3988">
  47. ^ Encalada-Abarca, Luis; Ferreira, Carlos Cardoso; Rocha, Jorge (2021-01-25). "Measuring Tourism Intensification in Urban Destinations: An Approach Based on Fractal Analysis". Journal of Travel Research. 61 (2): 394–413. doi:10.1177/0047287520987627. hdl:10451/45938. S2CID 234029035.394-413&rft.date=2021-01-25&rft_id=info:hdl/10451/45938&rft_id=https://api.semanticscholar.org/CorpusID:234029035#id-name=S2CID&rft_id=info:doi/10.1177/0047287520987627&rft.aulast=Encalada-Abarca&rft.aufirst=Luis&rft.au=Ferreira, Carlos Cardoso&rft.au=Rocha, Jorge&rft_id=https://journals.sagepub.com/doi/10.1177/0047287520987627&rfr_id=info:sid/en.wikipedia.org:Head/tail breaks" class="Z3988">
  48. ^ Chen, Xiao-Jian; Wang, Ying; Xie, Jiayi; Zhu, Xinyan; Shan, Jie (2021-09-01). "Urban hotspots detection of taxi stops with local maximum density". Computers, Environment and Urban Systems. 89: 101661. Bibcode:2021CEUS...8901661C. doi:10.1016/j.compenvurbsys.2021.101661. ISSN 0198-9715.
  49. ^ Loo, Becky P.Y.; Huang, Zhiran (2021-06-01). "Delineating traffic congestion zones in cities: An effective approach based on GIS". Journal of Transport Geography. 94: 103108. Bibcode:2021JTGeo..9403108L. doi:10.1016/j.jtrangeo.2021.103108. ISSN 0966-6923. S2CID 236332207.
  50. ^ Lv, Yongqiang; Zhou, Lin; Yao, Guobiao; Zheng, Xinqi (2021-09-01). "Detecting the true urban polycentric pattern of Chinese cities in morphological dimensions: A multiscale analysis based on geospatial big data". Cities. 116: 103298. doi:10.1016/j.cities.2021.103298. ISSN 0264-2751.
  51. ^ Fusco, Giovanni; Venerandi, Alessandro (2020). "Assessing Morphological Resilience. Methodological Challenges for Metropolitan Areas" (PDF). In Gervasi, Osvaldo; Murgante, Beniamino; Misra, Sanjay; Garau, Chiara; Blečić, Ivan; Taniar, David; Apduhan, Bernady O.; Rocha, Ana Maria A. C.; Tarantino, Eufemia (eds.). Computational Science and Its Applications – ICCSA 2020. Lecture Notes in Computer Science. Vol. 12255. Cham: Springer International Publishing. pp. 593–609. doi:10.1007/978-3-030-58820-5_44. ISBN 978-3-030-58820-5. S2CID 222093801.593-609&rft.pub=Springer International Publishing&rft.date=2020&rft_id=https://api.semanticscholar.org/CorpusID:222093801#id-name=S2CID&rft_id=info:doi/10.1007/978-3-030-58820-5_44&rft.isbn=978-3-030-58820-5&rft.aulast=Fusco&rft.aufirst=Giovanni&rft.au=Venerandi, Alessandro&rft_id=https://strathprints.strath.ac.uk/76685/1/Fusco_Venerandi_ICCSA_2020_Assessing_morphological_resilience_methodological_challenges_for_metropolitan_areas.pdf&rfr_id=info:sid/en.wikipedia.org:Head/tail breaks" class="Z3988">
  52. ^ Yang, Zhiwei; Chen, Yingbiao; Zheng, Zihao; Wu, Zhifeng (2022-01-24). "Identifying China's polycentric cities and evaluating the urban centre development level using Luojia-1A night-time light data". Annals of GIS. 28 (2): 185–195. Bibcode:2022AnGIS..28..185Y. doi:10.1080/19475683.2022.2026472. hdl:11577/3417232. ISSN 1947-5683. S2CID 246348661.185-195&rft.date=2022-01-24&rft_id=info:hdl/11577/3417232&rft_id=https://api.semanticscholar.org/CorpusID:246348661#id-name=S2CID&rft_id=info:bibcode/2022AnGIS..28..185Y&rft.issn=1947-5683&rft_id=info:doi/10.1080/19475683.2022.2026472&rft.aulast=Yang&rft.aufirst=Zhiwei&rft.au=Chen, Yingbiao&rft.au=Zheng, Zihao&rft.au=Wu, Zhifeng&rft_id=https://doi.org/10.1080%2F19475683.2022.2026472&rfr_id=info:sid/en.wikipedia.org:Head/tail breaks" class="Z3988">
  53. ^ Huang, Qingyao; Liu, Yihua; Chen, Chengjing (May 2022). "Quantifying Urban Expansion from the Perspective of Geographic Data: A Case Study of Guangzhou, China". ISPRS International Journal of Geo-Information. 11 (5): 303. Bibcode:2022IJGI...11..303H. doi:10.3390/ijgi11050303. ISSN 2220-9964.
  54. ^ Salazar, J. Miguel; López-Ramírez, Pablo; Siordia, Oscar S. (2022-05-19). "Detection of hierarchical crowd activity structures in geographic point data". PeerJ Computer Science. 8: e978. doi:10.7717/peerj-cs.978. ISSN 2376-5992. PMC 9138037. PMID 35634120. S2CID 248929686.
  55. ^ Imran, Muhammad; Qazi, Umair; Ofli, Ferda (January 2022). "TBCOV: Two Billion Multilingual COVID-19 Tweets with Sentiment, Entity, Geo, and Gender Labels". Data. 7 (1): 8. arXiv:2110.03664. doi:10.3390/data7010008. ISSN 2306-5729.
  56. ^ Cao, Fangjie; Qiu, Yun; Wang, Qianxin; Zou, Yan (January 2022). "Urban Form and Function Optimization for Reducing Carbon Emissions Based on Crowd-Sourced Spatio-Temporal Data". International Journal of Environmental Research and Public Health. 19 (17): 10805. doi:10.3390/ijerph191710805. ISSN 1660-4601. PMC 9518180. PMID 36078514.
  57. ^ Jin, Mingxin; Sun, Ranhao; Yang, Xiaojun; Yan, Ming; Chen, Liding (2022-09-29). "Remote sensing-based morphological analysis of core city growth across the globe". Cities. 131: 103982. doi:10.1016/j.cities.2022.103982. ISSN 0264-2751. S2CID 252629416.
  58. ^ Sui, Lili; Ma, Xinyu; Niu, Fangping; Chen, Jiamin; Tao, Jiaqi (November 2024). "Urban Growth Stage Analysis with Fractal Dimension Logistic Curve Modeling and Head/tail Breaks Method". Applied Mathematical Modelling: 115813. doi:10.1016/j.apm.2024.115813.
  59. ^ Ibáñez, J. J.; Ramírez-Rosario, B.; Fernández-Pozo, L. F.; Brevik, E. C. (2020). "Exploring Scaling Law of Geographical Space: Gaussian versus Paretian thinking". European Journal of Soil Science. 72 (2): 495–509. doi:10.1111/ejss.13031. ISSN 1365-2389. S2CID 225472821.495-509&rft.date=2020&rft_id=https://api.semanticscholar.org/CorpusID:225472821#id-name=S2CID&rft.issn=1365-2389&rft_id=info:doi/10.1111/ejss.13031&rft.aulast=Ibáñez&rft.aufirst=J. J.&rft.au=Ramírez-Rosario, B.&rft.au=Fernández-Pozo, L. F.&rft.au=Brevik, E. C.&rfr_id=info:sid/en.wikipedia.org:Head/tail breaks" class="Z3988">
  60. ^ Ibáñez, J. J.; Ramírez-Rosario, B.; Fernández-Pozo, L. F.; Brevik, E. C. (2020). "Land System Diversity, Scaling Laws, and Polygons Map Analysis". European Journal of Soil Science. 72 (2): 656–666. doi:10.1111/ejss.13035. ISSN 1365-2389. S2CID 225482696.656-666&rft.date=2020&rft_id=https://api.semanticscholar.org/CorpusID:225482696#id-name=S2CID&rft.issn=1365-2389&rft_id=info:doi/10.1111/ejss.13035&rft.aulast=Ibáñez&rft.aufirst=J. J.&rft.au=Ramírez-Rosario, B.&rft.au=Fernández-Pozo, L. F.&rft.au=Brevik, E. C.&rfr_id=info:sid/en.wikipedia.org:Head/tail breaks" class="Z3988">
  61. ^ Lancey, Mark de; Fabris-Rotelli, Inger (2020-12-08). "Ht-index for empirical evaluation of the sampled graph-based Discrete Pulse Transform". South African Computer Journal. 32 (2). doi:10.18489/sacj.v32i2.849. hdl:2263/81190. ISSN 2313-7835.
  62. ^ Zhen, Wenjie; Yang, Lin; Kwan, Mei-Po; Zuo, Zejun; Wan, Bo; Zhou, Shunping; Li, Shengwen; Ye, Yaqin; Qian, Haoyue; Pan, Xiaofang (2020-03-01). "Capturing what human eyes perceive: A visual hierarchy generation approach to emulating saliency-based visual attention for grid-like urban street networks". Computers, Environment and Urban Systems. 80: 101454. Bibcode:2020CEUS...8001454Z. doi:10.1016/j.compenvurbsys.2019.101454. ISSN 0198-9715. S2CID 211830143.
  63. ^ Kaplan, Nir; Burg, David; Omer, Itzhak (2020-03-01). "The spatial organization of accessibility and functional hierarchy: The case of Israel". Computers, Environment and Urban Systems. 80: 101429. Bibcode:2020CEUS...8001429K. doi:10.1016/j.compenvurbsys.2019.101429. ISSN 0198-9715. S2CID 210614239.
  64. ^ Mansour, Negadi; Hayet, Mebirouk; Abdelkader, Djedid (2023-08-25). "Exploring Urban Coherence through Fractality, Connectivity, and Arteriality of the Urban Street Network: Comparative Study of Five Medium-Sized Algerian Cities". Journal of Urban Planning and Development. 149 (4). doi:10.1061/JUPDDM.UPENG-4438. ISSN 1943-5444.
  65. ^ Long, Yuqing; Chen, Yanguang (2021-02-18). "Multifractal scaling analyses of urban street network structure: The cases of twelve megacities in China". PLOS ONE. 16 (2): e0246925. arXiv:2004.05545. Bibcode:2021PLoSO..1646925L. doi:10.1371/journal.pone.0246925. ISSN 1932-6203. PMC 7891711. PMID 33600472.
  66. ^ Tripathy, Pratyush; Rao, Pooja; Balakrishnan, Krishnachandran; Malladi, Teja (2020-11-02). "An open-source tool to extract natural continuity and hierarchy of urban street networks". Environment and Planning B: Urban Analytics and City Science. 48 (8): 2188–2205. doi:10.1177/2399808320967680. ISSN 2399-8083. S2CID 228836992.2188-2205&rft.date=2020-11-02&rft_id=https://api.semanticscholar.org/CorpusID:228836992#id-name=S2CID&rft.issn=2399-8083&rft_id=info:doi/10.1177/2399808320967680&rft.aulast=Tripathy&rft.aufirst=Pratyush&rft.au=Rao, Pooja&rft.au=Balakrishnan, Krishnachandran&rft.au=Malladi, Teja&rft_id=https://doi.org/10.1177/2399808320967680&rfr_id=info:sid/en.wikipedia.org:Head/tail breaks" class="Z3988">
  67. ^ Jiang, Bin; de Rijke, Chris (2021-02-08). "A power-law-based approach to mapping COVID-19 cases in the United States". Geo-spatial Information Science. 24 (3): 333–339. Bibcode:2021GSIS...24..333J. doi:10.1080/10095020.2020.1871306. ISSN 1009-5020.333-339&rft.date=2021-02-08&rft.issn=1009-5020&rft_id=info:doi/10.1080/10095020.2020.1871306&rft_id=info:bibcode/2021GSIS...24..333J&rft.aulast=Jiang&rft.aufirst=Bin&rft.au=de Rijke, Chris&rft_id=https://doi.org/10.1080%2F10095020.2020.1871306&rfr_id=info:sid/en.wikipedia.org:Head/tail breaks" class="Z3988">
  68. ^ Tingting, Wu; Bisong, Hu; Jin, Luo; Shuahua, Qi (2023-11-29). "A Head/Tail Breaks-Based Approach to Characterizing Space-Time Risks of COVID-19 Epidemic in China's Cities". ISPRS International Journal of Geo-Information. 12 (12): 485. Bibcode:2023IJGI...12..485W. doi:10.3390/ijgi12120485. ISSN 2220-9964.
  69. ^ Sui, Lili; Yu, Jian; Cang, Dingbang; Miao, Wenjing; Wang, Heyuan; Zhang, Jiwei; Yin, Shuaifeng; Chang, Keliang (2019-12-01). "The fractal description model of rock fracture networks characterization". Chaos, Solitons & Fractals. 129: 71–76. Bibcode:2019CSF...129...71S. doi:10.1016/j.chaos.2019.07.055. ISSN 0960-0779. S2CID 203042762.71-76&rft.date=2019-12-01&rft_id=info:doi/10.1016/j.chaos.2019.07.055&rft_id=https://api.semanticscholar.org/CorpusID:203042762#id-name=S2CID&rft.issn=0960-0779&rft_id=info:bibcode/2019CSF...129...71S&rft.aulast=Sui&rft.aufirst=Lili&rft.au=Yu, Jian&rft.au=Cang, Dingbang&rft.au=Miao, Wenjing&rft.au=Wang, Heyuan&rft.au=Zhang, Jiwei&rft.au=Yin, Shuaifeng&rft.au=Chang, Keliang&rft_id=https://www.sciencedirect.com/science/article/abs/pii/S0960077919303078&rfr_id=info:sid/en.wikipedia.org:Head/tail breaks" class="Z3988">
  70. ^ Sui, Lili; Wang, Heyuan; Wu, Jinsui; Zhang, Jiwei; Yu, Jian; Ma, Xinyu; Sun, Qiji (July 2022). "Fractal Description of Rock Fracture Networks Based on the Space Syntax Metric". Fractal and Fractional. 6 (7): 353. doi:10.3390/fractalfract6070353. ISSN 2504-3110.
  71. ^ Yuo, Tony Shun-Te; Chen, Wei Vicky; Tseng, Tzuhui Angie (2022-11-26). "Optimizing the routes of the hop-on hop-off sightseeing bus in Taipei city: a new method based on the criteria from major tourism cities". Current Issues in Tourism. 26 (21): 3422–3438. doi:10.1080/13683500.2022.2142096. ISSN 1368-3500. S2CID 254034731.3422-3438&rft.date=2022-11-26&rft_id=https://api.semanticscholar.org/CorpusID:254034731#id-name=S2CID&rft.issn=1368-3500&rft_id=info:doi/10.1080/13683500.2022.2142096&rft.aulast=Yuo&rft.aufirst=Tony Shun-Te&rft.au=Chen, Wei Vicky&rft.au=Tseng, Tzuhui Angie&rft_id=https://doi.org/10.1080/13683500.2022.2142096&rfr_id=info:sid/en.wikipedia.org:Head/tail breaks" class="Z3988">
  72. ^ He, Zhanjun; Wang, Zhipeng; Gu, Yu; An, Xiaoya (2023-10-23). "Measuring the Influence of Multiscale Geographic Space on the Heterogeneity of Crime Distribution". ISPRS International Journal of Geo-Information. 12 (10): 353. Bibcode:2023IJGI...12..437H. doi:10.3390/ijgi12100437. ISSN 2220-9964.
  73. ^ Loo, Becky P.Y.; Tsoi, K.H.; Feng, X.; Zhang, H.; Lin, Y.; Huang, Z.; Lafortezza, R.; Xu, Z.; Lin, H. (2024-04-01). "Cities and Urbanization: Balancing the Environmental and Socioeconomic Dimensions of Sustainability". Advanced Sustainable Systems. 12 (10): 353. Bibcode:2024AdSSy...800401L. doi:10.1002/adsu.202300401. hdl:11586/470087.
  74. ^ Tian, Kun; Peichao Gao (2015). A PostgreSQL function for calculating the ht-index. doi:10.13140/rg.2.1.3041.0324.