H3K79me2 is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the di-methylation at the 79th lysine residue of the histone H3 protein. H3K79me2 is detected in the transcribed regions of active genes.

Nomenclature

edit

H3K79me2 indicates dimethylation of lysine 79 on histone H3 protein subunit: [1]

Abbr. Meaning
H3 H3 family of histones
K standard abbreviation for lysine
79 position of amino acid residue

(counting from N-terminus)

me methyl group
2 number of methyl groups added

Lysine methylation

edit
 

This diagram shows the progressive methylation of a lysine residue. The di-methylation (third from left) denotes the methylation present in H3K79me2.[2]

Histone modifications

edit

The genomic DNA of eukaryotic cells is wrapped around special protein molecules known as Histones. The complexes formed by the looping of the DNA are known as chromatin. The basic structural unit of chromatin is the nucleosome: this consists of the core octamer of histones (H2A, H2B, H3 and H4) as well as a linker histone and about 180 base pairs of DNA. These core histones are rich in lysine and arginine residues. The carboxyl (C) terminal end of these histones contribute to histone-histone interactions, as well as histone-DNA interactions. The amino (N) terminal charged tails are the site of the post-translational modifications, such as the one seen in H3K36me3.[3][4]

Epigenetic implications

edit

The post-translational modification of histone tails by either histone modifying complexes or chromatin remodelling complexes are interpreted by the cell and lead to complex, combinatorial transcriptional output. It is thought that a Histone code dictates the expression of genes by a complex interaction between the histones in a particular region.[5] The current understanding and interpretation of histones comes from two large scale projects: ENCODE and the Epigenomic roadmap.[6] The purpose of the epigenomic study was to investigate epigenetic changes across the entire genome. This led to chromatin states which define genomic regions by grouping the interactions of different proteins and/or histone modifications together. Chromatin states were investigated in Drosophila cells by looking at the binding location of proteins in the genome. Use of ChIP-sequencing revealed regions in the genome characterised by different banding.[7] Different developmental stages were profiled in Drosophila as well, an emphasis was placed on histone modification relevance.[8] A look in to the data obtained led to the definition of chromatin states based on histone modifications.[9]

The human genome was annotated with chromatin states. These annotated states can be used as new ways to annotate a genome independently of the underlying genome sequence. This independence from the DNA sequence enforces the epigenetic nature of histone modifications. Chromatin states are also useful in identifying regulatory elements that have no defined sequence, such as enhancers. This additional level of annotation allows for a deeper understanding of cell specific gene regulation.[10]

Three forms of H3K79 methylation (H3K79me1; H3K79me2; H3K79me3) are catalyzed by DOT1 in yeast or DOT1L in mammals. H3K79 methylation participates in the DNA damage response and has multiple roles in nucleotide excision repair and sister chromatid recombinational repair.[11]

H3K79 dimethylation has been detected in the transcribed regions of active genes.[2]

Methods

edit

The histone mark H3K36me3 can be detected in a variety of ways:

1. Chromatin Immunoprecipitation Sequencing (ChIP-sequencing) measures the amount of DNA enrichment once bound to a targeted protein and immunoprecipitated. It results in good optimization and is used in vivo to reveal DNA-protein binding occurring in cells. ChIP-Seq can be used to identify and quantify various DNA fragments for different histone modifications along a genomic region.[12]

2. Micrococcal Nuclease sequencing (MNase-seq) is used to investigate regions that are bound by well positioned nucleosomes. Use of the micrococcal nuclease enzyme is employed to identify nucleosome positioning. Well positioned nucleosomes are seen to have enrichment of sequences.[13]

3. Assay for transposase accessible chromatin sequencing (ATAC-seq) is used to look in to regions that are nucleosome free (open chromatin). It uses hyperactive Tn5 transposon to highlight nucleosome localisation.[14][15][16]

See also

edit

References

edit
  1. ^ Huang, Suming; Litt, Michael D.; Ann Blakey, C. (2015-11-30). Epigenetic Gene Expression and Regulation. pp. 21–38. ISBN 9780127999586.21-38&rft.date=2015-11-30&rft.isbn=9780127999586&rft.aulast=Huang&rft.aufirst=Suming&rft.au=Litt, Michael D.&rft.au=Ann Blakey, C.&rfr_id=info:sid/en.wikipedia.org:H3K79me2" class="Z3988">
  2. ^ a b Farooq, Zeenat; Banday, Shahid; Pandita, Tej K.; Altaf, Mohammad (2016). "The many faces of histone H3K79 methylation". Mutation Research/Reviews in Mutation Research. 768: 46–52. doi:10.1016/j.mrrev.2016.03.005. PMC 4889126. PMID 27234562.46-52&rft.date=2016&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4889126#id-name=PMC&rft_id=info:pmid/27234562&rft_id=info:doi/10.1016/j.mrrev.2016.03.005&rft.aulast=Farooq&rft.aufirst=Zeenat&rft.au=Banday, Shahid&rft.au=Pandita, Tej K.&rft.au=Altaf, Mohammad&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4889126&rfr_id=info:sid/en.wikipedia.org:H3K79me2" class="Z3988">
  3. ^ Ruthenburg AJ, Li H, Patel DJ, Allis CD (December 2007). "Multivalent engagement of chromatin modifications by linked binding modules". Nature Reviews. Molecular Cell Biology. 8 (12): 983–94. doi:10.1038/nrm2298. PMC 4690530. PMID 18037899.983-94&rft.date=2007-12&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4690530#id-name=PMC&rft_id=info:pmid/18037899&rft_id=info:doi/10.1038/nrm2298&rft.aulast=Ruthenburg&rft.aufirst=AJ&rft.au=Li, H&rft.au=Patel, DJ&rft.au=Allis, CD&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4690530&rfr_id=info:sid/en.wikipedia.org:H3K79me2" class="Z3988">
  4. ^ Kouzarides T (February 2007). "Chromatin modifications and their function". Cell. 128 (4): 693–705. doi:10.1016/j.cell.2007.02.005. PMID 17320507.693-705&rft.date=2007-02&rft_id=info:doi/10.1016/j.cell.2007.02.005&rft_id=info:pmid/17320507&rft.aulast=Kouzarides&rft.aufirst=T&rft_id=https://doi.org/10.1016%2Fj.cell.2007.02.005&rfr_id=info:sid/en.wikipedia.org:H3K79me2" class="Z3988">
  5. ^ Jenuwein T, Allis CD (August 2001). "Translating the histone code". Science. 293 (5532): 1074–80. CiteSeerX 10.1.1.453.900. doi:10.1126/science.1063127. PMID 11498575.1074-80&rft.date=2001-08&rft_id=https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.453.900#id-name=CiteSeerX&rft_id=info:pmid/11498575&rft_id=info:doi/10.1126/science.1063127&rft.aulast=Jenuwein&rft.aufirst=T&rft.au=Allis, CD&rfr_id=info:sid/en.wikipedia.org:H3K79me2" class="Z3988">
  6. ^ Birney E, Stamatoyannopoulos JA, Dutta A, Guigó R, Gingeras TR, Margulies EH, et al. (The ENCODE Project Consortium) (June 2007). "Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project". Nature. 447 (7146): 799–816. Bibcode:2007Natur.447..799B. doi:10.1038/nature05874. PMC 2212820. PMID 17571346.799-816&rft.date=2007-06&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2212820#id-name=PMC&rft_id=info:pmid/17571346&rft_id=info:doi/10.1038/nature05874&rft_id=info:bibcode/2007Natur.447..799B&rft.aulast=Birney&rft.aufirst=E&rft.au=Stamatoyannopoulos, JA&rft.au=Dutta, A&rft.au=Guigó, R&rft.au=Gingeras, TR&rft.au=Margulies, EH&rft.au=Weng, Z&rft.au=Snyder, M&rft.au=Dermitzakis, ET&rft.au=Thurman, RE&rft.au=Kuehn, MS&rft.au=Taylor, CM&rft.au=Neph, S&rft.au=Koch, CM&rft.au=Asthana, S&rft.au=Malhotra, A&rft.au=Adzhubei, I&rft.au=Greenbaum, JA&rft.au=Andrews, RM&rft.au=Flicek, P&rft.au=Boyle, PJ&rft.au=Cao, H&rft.au=Carter, NP&rft.au=Clelland, GK&rft.au=Davis, S&rft.au=Day, N&rft.au=Dhami, P&rft.au=Dillon, SC&rft.au=Dorschner, MO&rft.au=Fiegler, H&rft.au=Giresi, PG&rft.au=Goldy, J&rft.au=Hawrylycz, M&rft.au=Haydock, A&rft.au=Humbert, R&rft.au=James, KD&rft.au=Johnson, BE&rft.au=Johnson, EM&rft.au=Frum, TT&rft.au=Rosenzweig, ER&rft.au=Karnani, N&rft.au=Lee, K&rft.au=Lefebvre, GC&rft.au=Navas, PA&rft.au=Neri, F&rft.au=Parker, SC&rft.au=Sabo, PJ&rft.au=Sandstrom, R&rft.au=Shafer, A&rft.au=Vetrie, D&rft.au=Weaver, M&rft.au=Wilcox, S&rft.au=Yu, M&rft.au=Collins, FS&rft.au=Dekker, J&rft.au=Lieb, JD&rft.au=Tullius, TD&rft.au=Crawford, GE&rft.au=Sunyaev, S&rft.au=Noble, WS&rft.au=Dunham, I&rft.au=Denoeud, F&rft.au=Reymond, A&rft.au=Kapranov, P&rft.au=Rozowsky, J&rft.au=Zheng, D&rft.au=Castelo, R&rft.au=Frankish, A&rft.au=Harrow, J&rft.au=Ghosh, S&rft.au=Sandelin, A&rft.au=Hofacker, IL&rft.au=Baertsch, R&rft.au=Keefe, D&rft.au=Dike, S&rft.au=Cheng, J&rft.au=Hirsch, HA&rft.au=Sekinger, EA&rft.au=Lagarde, J&rft.au=Abril, JF&rft.au=Shahab, A&rft.au=Flamm, C&rft.au=Fried, C&rft.au=Hackermüller, J&rft.au=Hertel, J&rft.au=Lindemeyer, M&rft.au=Missal, K&rft.au=Tanzer, A&rft.au=Washietl, S&rft.au=Korbel, J&rft.au=Emanuelsson, O&rft.au=Pedersen, JS&rft.au=Holroyd, N&rft.au=Taylor, R&rft.au=Swarbreck, D&rft.au=Matthews, N&rft.au=Dickson, MC&rft.au=Thomas, DJ&rft.au=Weirauch, MT&rft.au=Gilbert, J&rft.au=Drenkow, J&rft.au=Bell, I&rft.au=Zhao, X&rft.au=Srinivasan, KG&rft.au=Sung, WK&rft.au=Ooi, HS&rft.au=Chiu, KP&rft.au=Foissac, S&rft.au=Alioto, T&rft.au=Brent, M&rft.au=Pachter, L&rft.au=Tress, ML&rft.au=Valencia, A&rft.au=Choo, SW&rft.au=Choo, CY&rft.au=Ucla, C&rft.au=Manzano, C&rft.au=Wyss, C&rft.au=Cheung, E&rft.au=Clark, TG&rft.au=Brown, JB&rft.au=Ganesh, M&rft.au=Patel, S&rft.au=Tammana, H&rft.au=Chrast, J&rft.au=Henrichsen, CN&rft.au=Kai, C&rft.au=Kawai, J&rft.au=Nagalakshmi, U&rft.au=Wu, J&rft.au=Lian, Z&rft.au=Lian, J&rft.au=Newburger, P&rft.au=Zhang, X&rft.au=Bickel, P&rft.au=Mattick, JS&rft.au=Carninci, P&rft.au=Hayashizaki, Y&rft.au=Weissman, S&rft.au=Hubbard, T&rft.au=Myers, RM&rft.au=Rogers, J&rft.au=Stadler, PF&rft.au=Lowe, TM&rft.au=Wei, CL&rft.au=Ruan, Y&rft.au=Struhl, K&rft.au=Gerstein, M&rft.au=Antonarakis, SE&rft.au=Fu, Y&rft.au=Green, ED&rft.au=Karaöz, U&rft.au=Siepel, A&rft.au=Taylor, J&rft.au=Liefer, LA&rft.au=Wetterstrand, KA&rft.au=Good, PJ&rft.au=Feingold, EA&rft.au=Guyer, MS&rft.au=Cooper, GM&rft.au=Asimenos, G&rft.au=Dewey, CN&rft.au=Hou, M&rft.au=Nikolaev, S&rft.au=Montoya-Burgos, JI&rft.au=Löytynoja, A&rft.au=Whelan, S&rft.au=Pardi, F&rft.au=Massingham, T&rft.au=Huang, H&rft.au=Zhang, NR&rft.au=Holmes, I&rft.au=Mullikin, JC&rft.au=Ureta-Vidal, A&rft.au=Paten, B&rft.au=Seringhaus, M&rft.au=Church, D&rft.au=Rosenbloom, K&rft.au=Kent, WJ&rft.au=Stone, EA&rft.au=Batzoglou, S&rft.au=Goldman, N&rft.au=Hardison, RC&rft.au=Haussler, D&rft.au=Miller, W&rft.au=Sidow, A&rft.au=Trinklein, ND&rft.au=Zhang, ZD&rft.au=Barrera, L&rft.au=Stuart, R&rft.au=King, DC&rft.au=Ameur, A&rft.au=Enroth, S&rft.au=Bieda, MC&rft.au=Kim, J&rft.au=Bhinge, AA&rft.au=Jiang, N&rft.au=Liu, J&rft.au=Yao, F&rft.au=Vega, VB&rft.au=Lee, CW&rft.au=Ng, P&rft.au=Shahab, A&rft.au=Yang, A&rft.au=Moqtaderi, Z&rft.au=Zhu, Z&rft.au=Xu, X&rft.au=Squazzo, S&rft.au=Oberley, MJ&rft.au=Inman, D&rft.au=Singer, MA&rft.au=Richmond, TA&rft.au=Munn, KJ&rft.au=Rada-Iglesias, A&rft.au=Wallerman, O&rft.au=Komorowski, J&rft.au=Fowler, JC&rft.au=Couttet, P&rft.au=Bruce, AW&rft.au=Dovey, OM&rft.au=Ellis, PD&rft.au=Langford, CF&rft.au=Nix, DA&rft.au=Euskirchen, G&rft.au=Hartman, S&rft.au=Urban, AE&rft.au=Kraus, P&rft.au=Van Calcar, S&rft.au=Heintzman, N&rft.au=Kim, TH&rft.au=Wang, K&rft.au=Qu, C&rft.au=Hon, G&rft.au=Luna, R&rft.au=Glass, CK&rft.au=Rosenfeld, MG&rft.au=Aldred, SF&rft.au=Cooper, SJ&rft.au=Halees, A&rft.au=Lin, JM&rft.au=Shulha, HP&rft.au=Zhang, X&rft.au=Xu, M&rft.au=Haidar, JN&rft.au=Yu, Y&rft.au=Ruan, Y&rft.au=Iyer, VR&rft.au=Green, RD&rft.au=Wadelius, C&rft.au=Farnham, PJ&rft.au=Ren, B&rft.au=Harte, RA&rft.au=Hinrichs, AS&rft.au=Trumbower, H&rft.au=Clawson, H&rft.au=Hillman-Jackson, J&rft.au=Zweig, AS&rft.au=Smith, K&rft.au=Thakkapallayil, A&rft.au=Barber, G&rft.au=Kuhn, RM&rft.au=Karolchik, D&rft.au=Armengol, L&rft.au=Bird, CP&rft.au=de Bakker, PI&rft.au=Kern, AD&rft.au=Lopez-Bigas, N&rft.au=Martin, JD&rft.au=Stranger, BE&rft.au=Woodroffe, A&rft.au=Davydov, E&rft.au=Dimas, A&rft.au=Eyras, E&rft.au=Hallgrímsdóttir, IB&rft.au=Huppert, J&rft.au=Zody, MC&rft.au=Abecasis, GR&rft.au=Estivill, X&rft.au=Bouffard, GG&rft.au=Guan, X&rft.au=Hansen, NF&rft.au=Idol, JR&rft.au=Maduro, VV&rft.au=Maskeri, B&rft.au=McDowell, JC&rft.au=Park, M&rft.au=Thomas, PJ&rft.au=Young, AC&rft.au=Blakesley, RW&rft.au=Muzny, DM&rft.au=Sodergren, E&rft.au=Wheeler, DA&rft.au=Worley, KC&rft.au=Jiang, H&rft.au=Weinstock, GM&rft.au=Gibbs, RA&rft.au=Graves, T&rft.au=Fulton, R&rft.au=Mardis, ER&rft.au=Wilson, RK&rft.au=Clamp, M&rft.au=Cuff, J&rft.au=Gnerre, S&rft.au=Jaffe, DB&rft.au=Chang, JL&rft.au=Lindblad-Toh, K&rft.au=Lander, ES&rft.au=Koriabine, M&rft.au=Nefedov, M&rft.au=Osoegawa, K&rft.au=Yoshinaga, Y&rft.au=Zhu, B&rft.au=de Jong, PJ&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2212820&rfr_id=info:sid/en.wikipedia.org:H3K79me2" class="Z3988">
  7. ^ Filion GJ, van Bemmel JG, Braunschweig U, Talhout W, Kind J, Ward LD, Brugman W, de Castro IJ, Kerkhoven RM, Bussemaker HJ, van Steensel B (October 2010). "Systematic protein location mapping reveals five principal chromatin types in Drosophila cells". Cell. 143 (2): 212–24. doi:10.1016/j.cell.2010.09.009. PMC 3119929. PMID 20888037.212-24&rft.date=2010-10&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3119929#id-name=PMC&rft_id=info:pmid/20888037&rft_id=info:doi/10.1016/j.cell.2010.09.009&rft.aulast=Filion&rft.aufirst=GJ&rft.au=van Bemmel, JG&rft.au=Braunschweig, U&rft.au=Talhout, W&rft.au=Kind, J&rft.au=Ward, LD&rft.au=Brugman, W&rft.au=de Castro, IJ&rft.au=Kerkhoven, RM&rft.au=Bussemaker, HJ&rft.au=van Steensel, B&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3119929&rfr_id=info:sid/en.wikipedia.org:H3K79me2" class="Z3988">
  8. ^ Roy S, Ernst J, Kharchenko PV, Kheradpour P, Negre N, Eaton ML, et al. (modENCODE Consortium) (December 2010). "Identification of functional elements and regulatory circuits by Drosophila modENCODE". Science. 330 (6012): 1787–97. Bibcode:2010Sci...330.1787R. doi:10.1126/science.1198374. PMC 3192495. PMID 21177974.1787-97&rft.date=2010-12&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3192495#id-name=PMC&rft_id=info:pmid/21177974&rft_id=info:doi/10.1126/science.1198374&rft_id=info:bibcode/2010Sci...330.1787R&rft.aulast=Roy&rft.aufirst=S&rft.au=Ernst, J&rft.au=Kharchenko, PV&rft.au=Kheradpour, P&rft.au=Negre, N&rft.au=Eaton, ML&rft.au=Landolin, JM&rft.au=Bristow, CA&rft.au=Ma, L&rft.au=Lin, MF&rft.au=Washietl, S&rft.au=Arshinoff, BI&rft.au=Ay, F&rft.au=Meyer, PE&rft.au=Robine, N&rft.au=Washington, NL&rft.au=Di Stefano, L&rft.au=Berezikov, E&rft.au=Brown, CD&rft.au=Candeias, R&rft.au=Carlson, JW&rft.au=Carr, A&rft.au=Jungreis, I&rft.au=Marbach, D&rft.au=Sealfon, R&rft.au=Tolstorukov, MY&rft.au=Will, S&rft.au=Alekseyenko, AA&rft.au=Artieri, C&rft.au=Booth, BW&rft.au=Brooks, AN&rft.au=Dai, Q&rft.au=Davis, CA&rft.au=Duff, MO&rft.au=Feng, X&rft.au=Gorchakov, AA&rft.au=Gu, T&rft.au=Henikoff, JG&rft.au=Kapranov, P&rft.au=Li, R&rft.au=MacAlpine, HK&rft.au=Malone, J&rft.au=Minoda, A&rft.au=Nordman, J&rft.au=Okamura, K&rft.au=Perry, M&rft.au=Powell, SK&rft.au=Riddle, NC&rft.au=Sakai, A&rft.au=Samsonova, A&rft.au=Sandler, JE&rft.au=Schwartz, YB&rft.au=Sher, N&rft.au=Spokony, R&rft.au=Sturgill, D&rft.au=van Baren, M&rft.au=Wan, KH&rft.au=Yang, L&rft.au=Yu, C&rft.au=Feingold, E&rft.au=Good, P&rft.au=Guyer, M&rft.au=Lowdon, R&rft.au=Ahmad, K&rft.au=Andrews, J&rft.au=Berger, B&rft.au=Brenner, SE&rft.au=Brent, MR&rft.au=Cherbas, L&rft.au=Elgin, SC&rft.au=Gingeras, TR&rft.au=Grossman, R&rft.au=Hoskins, RA&rft.au=Kaufman, TC&rft.au=Kent, W&rft.au=Kuroda, MI&rft.au=Orr-Weaver, T&rft.au=Perrimon, N&rft.au=Pirrotta, V&rft.au=Posakony, JW&rft.au=Ren, B&rft.au=Russell, S&rft.au=Cherbas, P&rft.au=Graveley, BR&rft.au=Lewis, S&rft.au=Micklem, G&rft.au=Oliver, B&rft.au=Park, PJ&rft.au=Celniker, SE&rft.au=Henikoff, S&rft.au=Karpen, GH&rft.au=Lai, EC&rft.au=MacAlpine, DM&rft.au=Stein, LD&rft.au=White, KP&rft.au=Kellis, M&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3192495&rfr_id=info:sid/en.wikipedia.org:H3K79me2" class="Z3988">
  9. ^ Kharchenko PV, Alekseyenko AA, Schwartz YB, Minoda A, Riddle NC, Ernst J, et al. (March 2011). "Comprehensive analysis of the chromatin landscape in Drosophila melanogaster". Nature. 471 (7339): 480–5. Bibcode:2011Natur.471..480K. doi:10.1038/nature09725. PMC 3109908. PMID 21179089.480-5&rft.date=2011-03&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3109908#id-name=PMC&rft_id=info:pmid/21179089&rft_id=info:doi/10.1038/nature09725&rft_id=info:bibcode/2011Natur.471..480K&rft.aulast=Kharchenko&rft.aufirst=PV&rft.au=Alekseyenko, AA&rft.au=Schwartz, YB&rft.au=Minoda, A&rft.au=Riddle, NC&rft.au=Ernst, J&rft.au=Sabo, PJ&rft.au=Larschan, E&rft.au=Gorchakov, AA&rft.au=Gu, T&rft.au=Linder-Basso, D&rft.au=Plachetka, A&rft.au=Shanower, G&rft.au=Tolstorukov, MY&rft.au=Luquette, LJ&rft.au=Xi, R&rft.au=Jung, YL&rft.au=Park, RW&rft.au=Bishop, EP&rft.au=Canfield, TK&rft.au=Sandstrom, R&rft.au=Thurman, RE&rft.au=MacAlpine, DM&rft.au=Stamatoyannopoulos, JA&rft.au=Kellis, M&rft.au=Elgin, SC&rft.au=Kuroda, MI&rft.au=Pirrotta, V&rft.au=Karpen, GH&rft.au=Park, PJ&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3109908&rfr_id=info:sid/en.wikipedia.org:H3K79me2" class="Z3988">
  10. ^ Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, Kheradpour P, Zhang Z, et al. (Roadmap Epigenomics Consortium) (February 2015). "Integrative analysis of 111 reference human epigenomes". Nature. 518 (7539): 317–30. Bibcode:2015Natur.518..317.. doi:10.1038/nature14248. PMC 4530010. PMID 25693563.317-30&rft.date=2015-02&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530010#id-name=PMC&rft_id=info:pmid/25693563&rft_id=info:doi/10.1038/nature14248&rft_id=info:bibcode/2015Natur.518..317.&rft.aulast=Kundaje&rft.aufirst=A&rft.au=Meuleman, W&rft.au=Ernst, J&rft.au=Bilenky, M&rft.au=Yen, A&rft.au=Heravi-Moussavi, A&rft.au=Kheradpour, P&rft.au=Zhang, Z&rft.au=Wang, J&rft.au=Ziller, MJ&rft.au=Amin, V&rft.au=Whitaker, JW&rft.au=Schultz, MD&rft.au=Ward, LD&rft.au=Sarkar, A&rft.au=Quon, G&rft.au=Sandstrom, RS&rft.au=Eaton, ML&rft.au=Wu, YC&rft.au=Pfenning, AR&rft.au=Wang, X&rft.au=Claussnitzer, M&rft.au=Liu, Y&rft.au=Coarfa, C&rft.au=Harris, RA&rft.au=Shoresh, N&rft.au=Epstein, CB&rft.au=Gjoneska, E&rft.au=Leung, D&rft.au=Xie, W&rft.au=Hawkins, RD&rft.au=Lister, R&rft.au=Hong, C&rft.au=Gascard, P&rft.au=Mungall, AJ&rft.au=Moore, R&rft.au=Chuah, E&rft.au=Tam, A&rft.au=Canfield, TK&rft.au=Hansen, RS&rft.au=Kaul, R&rft.au=Sabo, PJ&rft.au=Bansal, MS&rft.au=Carles, A&rft.au=Dixon, JR&rft.au=Farh, KH&rft.au=Feizi, S&rft.au=Karlic, R&rft.au=Kim, AR&rft.au=Kulkarni, A&rft.au=Li, D&rft.au=Lowdon, R&rft.au=Elliott, G&rft.au=Mercer, TR&rft.au=Neph, SJ&rft.au=Onuchic, V&rft.au=Polak, P&rft.au=Rajagopal, N&rft.au=Ray, P&rft.au=Sallari, RC&rft.au=Siebenthall, KT&rft.au=Sinnott-Armstrong, NA&rft.au=Stevens, M&rft.au=Thurman, RE&rft.au=Wu, J&rft.au=Zhang, B&rft.au=Zhou, X&rft.au=Beaudet, AE&rft.au=Boyer, LA&rft.au=De Jager, PL&rft.au=Farnham, PJ&rft.au=Fisher, SJ&rft.au=Haussler, D&rft.au=Jones, SJ&rft.au=Li, W&rft.au=Marra, MA&rft.au=McManus, MT&rft.au=Sunyaev, S&rft.au=Thomson, JA&rft.au=Tlsty, TD&rft.au=Tsai, LH&rft.au=Wang, W&rft.au=Waterland, RA&rft.au=Zhang, MQ&rft.au=Chadwick, LH&rft.au=Bernstein, BE&rft.au=Costello, JF&rft.au=Ecker, JR&rft.au=Hirst, M&rft.au=Meissner, A&rft.au=Milosavljevic, A&rft.au=Ren, B&rft.au=Stamatoyannopoulos, JA&rft.au=Wang, T&rft.au=Kellis, M&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530010&rfr_id=info:sid/en.wikipedia.org:H3K79me2" class="Z3988">
  11. ^ Chen Y, Zhu WG (July 2016). "Biological function and regulation of histone and non-histone lysine methylation in response to DNA damage". Acta Biochim. Biophys. Sin. (Shanghai). 48 (7): 603–16. doi:10.1093/abbs/gmw050. PMID 27217472.603-16&rft.date=2016-07&rft_id=info:doi/10.1093/abbs/gmw050&rft_id=info:pmid/27217472&rft.aulast=Chen&rft.aufirst=Y&rft.au=Zhu, WG&rft_id=https://doi.org/10.1093%2Fabbs%2Fgmw050&rfr_id=info:sid/en.wikipedia.org:H3K79me2" class="Z3988">
  12. ^ "Whole-Genome Chromatin IP Sequencing (ChIP-Seq)" (PDF). Illumina. Retrieved 23 October 2019.
  13. ^ "MAINE-Seq/Mnase-Seq". illumina. Retrieved 23 October 2019.
  14. ^ Buenrostro, Jason D.; Wu, Beijing; Chang, Howard Y.; Greenleaf, William J. (2015). "ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide". Current Protocols in Molecular Biology. 109: 21.29.1–21.29.9. doi:10.1002/0471142727.mb2129s109. ISBN 9780471142720. PMC 4374986. PMID 25559105.
  15. ^ Schep, Alicia N.; Buenrostro, Jason D.; Denny, Sarah K.; Schwartz, Katja; Sherlock, Gavin; Greenleaf, William J. (2015). "Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions". Genome Research. 25 (11): 1757–1770. doi:10.1101/gr.192294.115. ISSN 1088-9051. PMC 4617971. PMID 26314830.1757-1770&rft.date=2015&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4617971#id-name=PMC&rft.issn=1088-9051&rft_id=info:pmid/26314830&rft_id=info:doi/10.1101/gr.192294.115&rft.aulast=Schep&rft.aufirst=Alicia N.&rft.au=Buenrostro, Jason D.&rft.au=Denny, Sarah K.&rft.au=Schwartz, Katja&rft.au=Sherlock, Gavin&rft.au=Greenleaf, William J.&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4617971&rfr_id=info:sid/en.wikipedia.org:H3K79me2" class="Z3988">
  16. ^ Song, L.; Crawford, G. E. (2010). "DNase-seq: A High-Resolution Technique for Mapping Active Gene Regulatory Elements across the Genome from Mammalian Cells". Cold Spring Harbor Protocols. 2010 (2): pdb.prot5384. doi:10.1101/pdb.prot5384. ISSN 1559-6095. PMC 3627383. PMID 20150147.