In mathematics, Hölder summation is a method for summing divergent series introduced by Hölder (1882).

Definition

edit

Given a series

 

define

 
 

If the limit

 

exists for some k, this is called the Hölder sum, or the (H,k) sum, of the series.

Particularly, since the Cesàro sum of a convergent series always exists, the Hölder sum of a series (that is Hölder summable) can be written in the following form:

 

See also

edit

References

edit
  • Hölder, O. (1882), "Grenzwerthe von Reihen an der Konvergenzgrenze", Math. Ann., 20 (4): 535–549, doi:10.1007/bf01540142, S2CID 124308783535-549&rft.date=1882&rft_id=info:doi/10.1007/bf01540142&rft_id=https://api.semanticscholar.org/CorpusID:124308783#id-name=S2CID&rft.aulast=Hölder&rft.aufirst=O.&rft_id=https://zenodo.org/record/1428322&rfr_id=info:sid/en.wikipedia.org:Hölder summation" class="Z3988">
  • "Hölder summation methods", Encyclopedia of Mathematics, EMS Press, 2001 [1994]