Guanosine monophosphate

(Redirected from Guanylic acid)

Guanosine monophosphate (GMP), also known as 5′-guanidylic acid or guanylic acid (conjugate base guanylate), is a nucleotide that is used as a monomer in RNA. It is an ester of phosphoric acid with the nucleoside guanosine. GMP consists of the phosphate group, the pentose sugar ribose, and the nucleobase guanine; hence it is a ribonucleotide monophosphate. Guanosine monophosphate is commercially produced by microbial fermentation.[1]

Guanosine monophosphate
Space-filling model of guanosine monophosphate
Names
IUPAC name
5′-Guanylic acid
Systematic IUPAC name
[(2R,3S,4R,5R)-5-(2-Amino-6-oxo-1,6-dihydro-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate
Other names
Identifiers
3D model (JSmol)
Abbreviations GMP
ChEMBL
ChemSpider
ECHA InfoCard 100.001.453 Edit this at Wikidata
E number E626 (flavour enhancer)
MeSH Guanosine monophosphate
UNII
  • C1=NC2=C(N1[C@H]3[C@@H]([C@@H]([C@H](O3)COP(=O)(O)O)O)O)NC(=NC2=O)N
Properties
C10H14N5O8P
Molar mass 363.223 g·mol−1
Acidity (pKa) 0.7, 2.4, 6.1, 9.4
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

As an acyl substituent, it takes the form of the prefix guanylyl-.

De novo synthesis

edit

GMP synthesis starts with D-ribose 5′-phosphate, a product of the pentose phosphate pathway. The synthesis proceeds by the gradual formation of the purine ring on carbon-1 of ribose, with CO2, glutamine, glycine, aspartate and one-carbon derivatives of tetrahydrofolate donating various elements towards the building of the ring.[2]

 

As inhibitor of guanosine monophosphate synthesis in experimental models, the glutamine analogue DON can be used.[3]

cGMP

edit

GMP can also exist as a cyclic structure known as cyclic GMP. Within certain cells the enzyme guanylyl cyclase makes cGMP from GTP.

cGMP plays an important role in mediating hormonal signaling.[2]

Sources

edit

GMP was originally identified as the umami substance in dried shiitake mushroom. The drying process significantly increases GMP content with the breakdown of RNA. It can be found in a number of other mushrooms.[4]

Industrial production is based on fermentation: a bacterium converts sugars into AICA ribonucleotide, which is then converted chemically to GMP.[5] Tapioca starch is a possible sugar source.[6]

Food additive

edit

Guanosine monophosphate is known as E number reference E626.[7] In the form of its salts, such as disodium guanylate (E627), dipotassium guanylate (E628) and calcium guanylate (E629), are food additives used as flavor enhancers to provide the umami taste.[7] It is often used in synergy with disodium inosinate; the combination is known as disodium 5′-ribonucleotides. Disodium guanylate is often found in instant noodles, potato chips and snacks, savoury rice, tinned vegetables, cured meats, and packet soup.

As it is a fairly expensive additive, it is usually not used independently of glutamic acid or monosodium glutamate (MSG), which also contribute umami. If inosinate and guanylate salts are present in a list of ingredients but MSG does not appear to be, the glutamic acid is likely provided as part of another ingredient, such as a processed soy protein complex (hydrolyzed soy protein), autolyzed yeast, or soy sauce.

See also

edit

References

edit
  1. ^ "The Vegetarian Resource Group Blog". www.vrg.org. Retrieved 25 April 2018.
  2. ^ a b Voet, Donald; Voet, Judith G. (2012). Biochemistry. USA: John Wiley & Sons Inc. pp. 1107–1109. ISBN 978-0-470-57095-1.
  3. ^ Ahluwalia GS et al. Metabolism and action of amino acid analog anti-cancer agents ”, in Pharmac. Ther. (1990) 46: 243-271
  4. ^ Kurihara, K (2015). "Umami the Fifth Basic Taste: History of Studies on Receptor Mechanisms and Role as a Food Flavor". BioMed Research International. 2015: 189402. doi:10.1155/2015/189402. PMC 4515277. PMID 26247011.
  5. ^ Kinoshita, Kazumoto; Shiro, Teruo; Yamazaki, Akihiro; Kumashiro, Izumi; Takenishi, Tadao; Tsunoda, Toshinao (July 1967). "Industrial production of disodium 5?-guanylate". Biotechnology and Bioengineering. 9 (3): 329–342. doi:10.1002/bit.260090306. S2CID 84216811.
  6. ^ Conn, Helen (1 February 1992). ""Umami": The Fifth Basic Taste". Nutrition & Food Science. 92 (2): 21–23. doi:10.1108/EUM0000000000953.
  7. ^ a b "Additive categories | CEFF". www.ceff.info. Retrieved 2021-11-30.