A flow battery, or redox flow battery (after reduction–oxidation), is a type of electrochemical cell where chemical energy is provided by two chemical components dissolved in liquids that are pumped through the system on separate sides of a membrane.[2][3] Ion transfer inside the cell (accompanied by current flow through an external circuit) occurs across the membrane while the liquids circulate in their respective spaces.
Various flow batteries have been demonstrated, including inorganic[4] and organic forms.[5] Flow battery design can be further classified into full flow, semi-flow, and membraneless.
The fundamental difference between conventional and flow batteries is that energy is stored in the electrode material in conventional batteries, while in flow batteries it is stored in the electrolyte.
A flow battery may be used like a fuel cell (where new charged negolyte (a.k.a. reducer or fuel) and charged posolyte (a.k.a. oxidant) are added to the system) or like a rechargeable battery (where an electric power source drives regeneration of the reducer and oxidant).
Flow batteries have certain technical advantages over conventional rechargeable batteries with solid electroactive materials, such as independent scaling of power (determined by the size of the stack) and of energy (determined by the size of the tanks), long cycle and calendar life,[6] and potentially lower total cost of ownership,. However, flow batteries suffer from low cycle energy efficiency (50–80%). This drawback stems from the need to operate flow batteries at high (>= 100 mA/cm2) current densities to reduce the effect of internal crossover (through the membrane/separator) and to reduce the cost of power (size of stacks). Also, most flow batteries (Zn-Cl2, Zn-Br2 and H2-LiBrO3 are exceptions) have lower specific energy (heavier weight) than lithium-ion batteries. The heavier weight results mostly from the need to use a solvent (usually water) to maintain the redox active species in the liquid phase.[7]
Patent Classifications for flow batteries had not been fully developed as of 2021. Cooperative Patent Classification considers flow batteries as a subclass of regenerative fuel cell (H01M8/18), even though it is more appropriate to consider fuel cells as a subclass of flow batteries.[citation needed]
Cell voltage is chemically determined by the Nernst equation and ranges, in practical applications, from 1.0 to 2.43 volts. The energy capacity is a function of the electrolyte volume and the power is a function of the surface area of the electrodes.[8]
History
edit
The zinc–bromine flow battery (Zn-Br2) was the original flow battery.[8] John Doyle file patent US 224404 on September 29, 1879. Zn-Br2 batteries have relatively high specific energy, and were demonstrated in electric cars in the 1970s.[9]
Walther Kangro, an Estonian chemist working in Germany in the 1950s, was the first to demonstrate flow batteries based on dissolved transition metal ions: Ti–Fe and Cr–Fe.[10] After initial experimentations with Ti–Fe redox flow battery (RFB) chemistry, NASA and groups in Japan and elsewhere selected Cr–Fe chemistry for further development. Mixed solutions (i.e. comprising both chromium and iron species in the negolyte and in the posolyte) were used in order to reduce the effect of time-varying concentration during cycling.
In the late 1980s, Sum, Rychcik and Skyllas-Kazacos[11] at the University of New South Wales (UNSW) in Australia demonstrated vanadium RFB chemistry UNSW filed several patents related to VRFBs, that were later licensed to Japanese, Thai and Canadian companies, which tried to commercialize this technology with varying success.[12]
Organic redox flow batteries emerged in 2009.[13]
In 2022, Dalian, China began operating a 400 MWh, 100 MW vanadium flow battery, then the largest of its type.[14]
Sumitomo Electric has built flow batteries for use in Taiwan, Belgium, Australia, Morocco and California. Hokkaido’s flow battery farm was the biggest in the world when it opened in April 2022 — until China deployed one eight times larger that can match the output of a natural gas plant.[15]
Design
editA flow battery is a rechargeable fuel cell in which an electrolyte containing one or more dissolved electroactive elements flows through an electrochemical cell that reversibly converts chemical energy to electrical energy. Electroactive elements are "elements in solution that can take part in an electrode reaction or that can be adsorbed on the electrode."[16]
Electrolyte is stored externally, generally in tanks, and is typically pumped through the cell (or cells) of the reactor.[17] Flow batteries can be rapidly "recharged" by replacing discharged electrolyte liquid (analogous to refueling internal combustion engines) while recovering the spent material for recharging. They can also be recharged in situ. Many flow batteries use carbon felt electrodes due to its low cost and adequate electrical conductivity, despite their limited power density due to their low inherent activity toward many redox couples.[18][19] The amount of electricity that can be generated depends on the volume of electrolyte.
Flow batteries are governed by the design principles of electrochemical engineering.[20]
Evaluation
editRedox flow batteries, and to a lesser extent hybrid flow batteries, have the advantages of:
- Independent scaling of energy (tanks) and power (stack), which allows for a cost/weight/etc. optimization for each application
- Long cycle and calendar lives (because there are no solid-to-solid phase transitions, which degrade lithium-ion and related batteries)
- Quick response times
- No need for "equalisation" charging (the overcharging of a battery to ensure all cells have an equal charge)
- No harmful emissions
- Little/no self-discharge during idle periods
- Recycling of electroactive materials
Some types offer easy state-of-charge determination (through voltage dependence on charge), low maintenance and tolerance to overcharge/overdischarge.
They are safe because they typically do not contain flammable electrolytes, and electrolytes can be stored away from the power stack.
The main disadvantages are:[21]
- Low energy density (large tanks are required to store useful amounts of energy)
- Low charge and discharge rates. This implies large electrodes and membrane separators, increasing cost.
- Lower energy efficiency, because they operate at higher current densities to minimize the effects of cross-over (internal self-discharge) and to reduce cost.
Flow batteries typically have a higher energy efficiency than fuel cells, but lower than lithium-ion batteries.[22]
Traditional flow battery chemistries have both low specific energy (which makes them too heavy for fully electric vehicles) and low specific power (which makes them too expensive for stationary energy storage). However a high power of 1.4 W/cm2 was demonstrated for hydrogen–bromine flow batteries, and a high specific energy (530 Wh/kg at the tank level) was shown for hydrogen–bromate flow batteries[23][24][25]
Traditional flow batteries
editThe redox cell uses redox-active species in fluid (liquid or gas) media. Redox flow batteries are rechargeable (secondary) cells.[26] Because they employ heterogeneous electron transfer rather than solid-state diffusion or intercalation they are more similar to fuel cells than to conventional batteries. The main reason fuel cells are not considered to be batteries, is because originally (in the 1800s) fuel cells emerged as a means to produce electricity directly from fuels (and air) via a non-combustion electrochemical process. Later, particularly in the 1960s and 1990s, rechargeable fuel cells (i.e. H
2/O
2, such as unitized regenerative fuel cells in NASA's Helios Prototype) were developed.
Cr–Fe chemistry has disadvantages, including hydrate isomerism (i.e. the equilibrium between electrochemically active Cr3 chloro-complexes and inactive hexa-aqua complex and hydrogen evolution on the negode. Hydrate isomerism can be alleviated by adding chelating amino-ligands, while hydrogen evolution can be mitigated by adding Pb salts to increase the H2 overvoltage and Au salts for catalyzing the chromium electrode reaction.[27]
Traditional redox flow battery chemistries include iron-chromium, vanadium, polysulfide–bromide (Regenesys), and uranium.[28] Redox fuel cells are less common commercially although many have been proposed.[29][30][31][32]
Vanadium
editVanadium redox flow batteries are the commercial leaders. They use vanadium at both electrodes, so they do not suffer cross-contamination. The limited solubility of vanadium salts, however, offsets this advantage in practice. This chemistry's advantages include four oxidation states within the electrochemical voltage window of the graphite-aqueous acid interface, and thus the elimination of the mixing dilution, detrimental in Cr–Fe RFBs. More importantly for commercial success is the near-perfect match of the voltage window of carbon/aqueous acid interface with that of vanadium redox-couples. This extends the life of the low-cost carbon electrodes and reduces the impact of side reactions, such as H2 and O2 evolutions, resulting in many year durability and many cycle (15,000–20,000) lives, which in turn results in a record low levelized cost of energy (LCOE, system cost divided by usable energy, cycle life, and round-trip efficiency). These long lifetimes allow for the amortization of their relatively high capital cost (driven by vanadium, carbon felts, bipolar plates, and membranes). The LCOE is on the order of a few tens cents per kWh, much lower than of solid-state batteries and near the targets of 5 cents stated by US and EC government agencies.[33] Major challenges include: low abundance and high costs of V2O5 (> $30 / Kg); parasitic reactions including hydrogen and oxygen evolution; and precipitation of V2O5 during cycling.
Hybrid
editThe hybrid flow battery (HFB) uses one or more electroactive components deposited as a solid layer.[34] The major disadvantage is that this reduces decoupled energy and power. The cell contains one battery electrode and one fuel cell electrode. This type is limited in energy by the electrode surface area.
HFBs include zinc–bromine, zinc–cerium,[35] soluble lead–acid,[36] and all-iron flow batteries. Weng et al. reported a vanadium–metal hydride hybrid flow battery with an experimental OCV of 1.93 V and operating voltage of 1.70 V, relatively high values. It consists of a graphite felt positive electrode operating in a mixed solution of VOSO
4and H
2SO
4, and a metal hydride negative electrode in KOH aqueous solution. The two electrolytes of different pH are separated by a bipolar membrane. The system demonstrated good reversibility and high efficiencies in coulomb (95%), energy (84%), and voltage (88%). They reported improvements with increased current density, inclusion of larger 100 cm2 electrodes, and series operation. Preliminary data using a fluctuating simulated power input tested the viability toward kWh scale storage.[37] In 2016, a high energy density Mn(VI)/Mn(VII)-Zn hybrid flow battery was proposed.[38]
Zinc-polyiodide
editA prototype zinc–polyiodide flow battery demonstrated an energy density of 167 Wh/L. Older zinc–bromide cells reach 70 Wh/L. For comparison, lithium iron phosphate batteries store 325 Wh/L. The zinc–polyiodide battery is claimed to be safer than other flow batteries given its absence of acidic electrolytes, nonflammability and operating range of −4 to 122 °F (−20 to 50 °C) that does not require extensive cooling circuitry, which would add weight and occupy space. One unresolved issue is zinc buildup on the negative electrode that can permeate the membrane, reducing efficiency. Because of the Zn dendrite formation, Zn-halide batteries cannot operate at high current density (> 20 mA/cm2) and thus have limited power density. Adding alcohol to the electrolyte of the ZnI battery can help.[39] The drawbacks of Zn/I RFB lie are the high cost of Iodide salts (> $20 / Kg); limited area capacity of Zn deposition, reducing the decoupled energy and power; and Zn dendrite formation.
When the battery is fully discharged, both tanks hold the same electrolyte solution: a mixture of positively charged zinc ions (Zn2
) and negatively charged iodide ion, (I−
). When charged, one tank holds another negative ion, polyiodide, (I−
3). The battery produces power by pumping liquid across the stack where the liquids mix. Inside the stack, zinc ions pass through a selective membrane and change into metallic zinc on the stack's negative side.[40] To increase energy density, bromide ions (Br
–) are used as the complexing agent to stabilize the free iodine, forming iodine–bromide ions (I
2Br−
) as a means to free up iodide ions for charge storage.[41]
Proton flow
editProton flow batteries (PFB) integrate a metal hydride storage electrode into a reversible proton exchange membrane (PEM) fuel cell. During charging, PFB combines hydrogen ions produced from splitting water with electrons and metal particles in one electrode of a fuel cell. The energy is stored in the form of a metal hydride solid. Discharge produces electricity and water when the process is reversed and the protons are combined with ambient oxygen. Metals less expensive than lithium can be used and provide greater energy density than lithium cells.[42][43]
Organic
editCompared to inorganic redox flow batteries, such as vanadium and Zn-Br2 batteries. Organic redox flow batteries advantage is the tunable redox properties of its active components. As of 2021, organic RFB experienced low durability (i.e. calendar or cycle life, or both) and have not been demonstrated on a commercial scale.[13]
Organic redox flow batteries can be further classified into aqueous (AORFBs) and non-aqueous (NAORFBs).[44][45] AORFBs use water as solvent for electrolyte materials while NAORFBs employ organic solvents. AORFBs and NAORFBs can be further divided into total and hybrid systems. The former use only organic electrode materials, while the latter use inorganic materials for either anode or cathode. In larger-scale energy storage, lower solvent cost and higher conductivity give AORFBs greater commercial potential, as well as offering the safety advantages of water-based electrolytes. NAORFBs instead provide a much larger voltage window and occupy less space.
pH neutral AORFBs
editpH neutral AORFBs are operated at pH 7 conditions, typically using NaCl as a supporting electrolyte. At pH neutral conditions, organic and organometallic molecules are more stable than at corrosive acidic and alkaline conditions. For example, K4[Fe(CN)], a common catholyte used in AORFBs, is not stable in alkaline solutions but is at pH neutral conditions.[46]
AORFBs used methyl viologen as an anolyte and 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl as a catholyte at pH neutral conditions, plus NaCL and a low-cost anion exchange membrane. This MV/TEMPO system has the highest cell voltage, 1.25 V, and, possibly, lowest capital cost ($180/kWh) reported for AORFBs as of 2015. The aqueous liquid electrolytes were designed as a drop-in replacement without replacing infrastructure. A 600-milliwatt test battery was stable for 100 cycles with nearly 100 percent efficiency at current densities ranging from 20 to 100 mA/cm2, with optimal performance rated at 40–50 mA, at which about 70% of the battery's original voltage was retained.[47][48] Neutral AORFBs can be more environmentally friendly than acid or alkaline alternatives, while showing electrochemical performance comparable to corrosive RFBs. The MV/TEMPO AORFB has an energy density of 8.4 Wh/L with the limitation on the TEMPO side. In 2019Viologen-based flow batteries using an ultralight sulfonate–viologen/ferrocyanide AORFB were reported to be stable for 1000 cycles at an energy density of 10 Wh/L, the most stable, energy-dense AORFB to that date.[49]
Acidic AORFBs
editQuinones and their derivatives are the basis of many organic redox systems.[50][51][52] In one study, 1,2-dihydrobenzoquinone-3,5-disulfonic acid (BQDS) and 1,4-dihydrobenzoquinone-2-sulfonic acid (BQS) were employed as cathodes, and conventional Pb/PbSO4 was the anolyte in a hybrid acid AORFB. Quinones accept two units of electrical charge, compared with one in conventional catholyte, implying twice as much energy in a given volume.
Another quinone 9,10-Anthraquinone-2,7-disulfonic acid (AQDS), was evaluated.[53] AQDS undergoes rapid, reversible two-electron/two-proton reduction on a glassy carbon electrode in sulfuric acid. An aqueous flow battery with inexpensive carbon electrodes, combining the quinone/hydroquinone couple with the Br
2/Br−
redox couple, yields a peak galvanic power density exceeding 6,000 W/m2 at 13,000 A/m2. Cycling showed > 99% storage capacity retention per cycle. Volumetric energy density was over 20 Wh/L.[54] Anthraquinone-2-sulfonic acid and anthraquinone-2,6-disulfonic acid on the negative side and 1,2-dihydrobenzoquinone- 3,5-disulfonic acid on the positive side avoids the use of hazardous Br2. The battery was claimed to last 1,000 cycles without degradation.[55] It has a low cell voltage (ca. 0.55 V) and a low energy density (< 4 Wh/L).
Replacing hydrobromic acid with a less toxic alkaline solution (1 M KOH) and ferrocyanide[56] was less corrosive, allowing the use of inexpensive polymer tanks. The increased electrical resistance in the membrane was compensated increased voltage to 1.2 V.[57][58] Cell efficiency exceeded 99%, while round-trip efficiency measured 84%. The battery offered an expected lifetime of at least 1,000 cycles. Its theoretic energy density was 19 Wh/L.[59] Ferrocyanide's chemical stability in high pH KOH solution was not verified.
Integrating both anolyte and catholyte in the same molecule, i.e., bifunctional analytes[60] or combi-molecules[61] allow the same material to be used in both tanks. In one tank it is an electron donor, while in the other it is an electron recipient. This has advantages such as diminishing crossover effects.[62] Thus, quinone diaminoanthraquinone[62] and indigo-based[60] molecules as well as TEMPO/phenazine[61] are potential electrolytes for such symmetric redox-flow batteries (SRFB).
Another approach adopted a Blatter radical as the donor/recipient. It endured 275 charge and discharge cycles in tests, although it was not water-soluble.[63]
Alkaline
editQuinone and fluorenone molecules can be reengineered to increase water solubility. In 2021 a reversible ketone (de)hydrogenation demonstration cell operated continuously for 120 days over 1,111 charging cycles at room temperature without a catalyst, retaining 97% percent capacity. The cell offered more than double the energy density of vanadium-based systems.[64][65] The major challenge was the lack of a stable catholyte, holding energy densities below 5 Wh/L. Alkaline AORFBs use excess potassium ferrocyanide catholyte because of the stability issue of ferrocyanide in alkaline solutions.
Metal-organic flow batteries use organic ligands to improve redox properties. The ligands can be chelates such as EDTA, and can enable the electrolyte to be in neutral or alkaline conditions under which metal aquo complexes would otherwise precipitate. By blocking the coordination of water to the metal, organic ligands can inhibit metal-catalyzed water-splitting reactions, resulting in higher voltage aqueous systems. For example, the use of chromium coordinated to 1,3-propanediaminetetraacetate (PDTA), gave cell potentials of 1.62 V vs. ferrocyanide and a record 2.13 V vs. bromine.[66] Metal-organic flow batteries may be known as coordination chemistry flow batteries, such as Lockheed Martin's Gridstar Flow technology.[67]
Oligomer
editOligomer redox-species were proposed to reduce crossover, while allowing low-cost membranes. Such redox-active oligomers are known as redoxymers. One system uses organic polymers and a saline solution with a cellulose membrane. A prototype underwent 10,000 charging cycles while retaining substantial capacity. The energy density was 10 Wh/L.[68] Current density reached ,1 amperes/cm2.[69]
Another oligomer RFB employed viologen and TEMPO redoxymers in combination with low-cost dialysis membranes. Functionalized macromolecules (similar to acrylic glass or styrofoam) dissolved in water were the active electrode material. The size-selective nanoporous membrane worked like a strainer and is produced much more easily and at lower cost than conventional ion-selective membranes. It block the big "spaghetti"-like polymer molecules, while allowing small counterions to pass.[70] The concept may solve the high cost of traditional Nafion membrane. RFBs with oligomer redox-species have not demonstrated competitive area-specific power. Low operating current density may be an intrinsic feature of large redox-molecules.[citation needed]
Other types
editOther flow-type batteries include the zinc–cerium battery, the zinc–bromine battery, and the hydrogen–bromine battery.
Membraneless
editA membraneless battery[71] relies on laminar flow in which two liquids are pumped through a channel, where they undergo electrochemical reactions to store or release energy. The solutions pass in parallel, with little mixing. The flow naturally separates the liquids, without requiring a membrane.[72]
Membranes are often the most costly and least reliable battery components, as they are subject to corrosion by repeated exposure to certain reactants. The absence of a membrane enables the use of a liquid bromine solution and hydrogen: this combination is problematic when membranes are used, because they form hydrobromic acid that can destroy the membrane. Both materials are available at low cost.[73] The design uses a small channel between two electrodes. Liquid bromine flows through the channel over a graphite cathode and hydrobromic acid flows under a porous anode. At the same time, hydrogen gas flows across the anode. The chemical reaction can be reversed to recharge the battery – a first for a membraneless design.[73] One such membraneless flow battery announced in August 2013 produced a maximum power density of 795 kW/cm2, three times more than other membraneless systems—and an order of magnitude higher than lithium-ion batteries.[73]
In 2018, a macroscale membraneless RFB capable of recharging and recirculation of the electrolyte streams was demonstrated. The battery was based on immiscible organic catholyte and aqueous anolyte liquids, which exhibited high capacity retention and Coulombic efficiency during cycling.[74]
Suspension-based
editA lithium–sulfur system arranged in a network of nanoparticles eliminates the requirement that charge moves in and out of particles that are in direct contact with a conducting plate. Instead, the nanoparticle network allows electricity to flow throughout the liquid. This allows more energy to be extracted.[76]
In a semi-solid flow battery, positive and negative electrode particles are suspended in a carrier liquid. The suspensions are flow through a stack of reaction chambers, separated by a barrier such as a thin, porous membrane. The approach combines the basic structure of aqueous-flow batteries, which use electrode material suspended in a liquid electrolyte, with the chemistry of lithium-ion batteries in both carbon-free suspensions and slurries with a conductive carbon network.[1][77][78] The carbon-free semi-solid RFB is also referred to as solid dispersion redox flow batteries.[79] Dissolving a material changes its chemical behavior significantly. However, suspending bits of solid material preserves the solid's characteristics. The result is a viscous suspension.[80]
In 2022, Influit Energy announced a flow battery electrolyte consisting of a metal oxide suspended in an aqueous solution.[81][82]
Flow batteries with redox-targeted solids (ROTS), also known as solid energy boosters (SEBs)[83][84][85][86][87][88][89] either the posolyte or negolyte or both (a.k.a. redox fluids), come in contact with one or more solid electroactive materials (SEM). The fluids comprise one or more redox couples, with redox potentials flanking the redox potential of the SEM. Such SEB/RFBs combine the high specific energy advantage of conventional batteries (such as lithium-ion) with the decoupled energy-power advantage of flow batteries. SEB(ROTS) RFBs have advantages compared to semi-solid RFBs, such as no need to pump viscous slurries, no precipitation/clogging, higher area-specific power, longer durability, and wider chemical design space. However, because of double energy losses (one in the stack and another in the tank between the SEB(ROTS) and a mediator), such batteries suffer from poor energy efficiency. On a system-level, the practical specific energy of traditional lithium-ion batteries is larger than that of SEB(ROTS)-flow versions of lithium-ion batteries.[90]
Comparison
editCouple | Max. cell voltage (V) | Average electrode power density (W/m2) | Average fluid energy density | Cycles |
---|---|---|---|---|
Hydrogen–lithium bromate | 1.1 | 15,000 | 750 Wh/kg | |
Hydrogen–lithium chlorate | 1.4 | 10,000 | 1400 Wh/kg | |
Bromine–hydrogen | 1.07 | 7,950 | ||
Iron–tin | 0.62 | < 200 | ||
Iron–titanium | 0.43 | < 200 | ||
Iron–chromium | 1.07 | < 200 | ||
Iron–iron | 1.21 | < 1000 | 20 Wh/L | 10,000 |
Organic (2013) | 0.8 | 13,000 | 21.4 Wh/L | 10 |
Organic (2015) | 1.2 | 7.1 Wh/L | 100 | |
MV-TEMPO | 1.25 | 8.4 Wh/L | 100 | |
Sulfonate viologen (NH4)4[Fe(CN)6] | 0.9 | > 500 | 10 Wh/L | 1,000 |
Metal-organic–ferrocyanide[66] | 1.62 | 2,000 | 21.7 Wh/L | 75 |
Metal-organic–bromine[66] | 2.13 | 3,000 | 35 Wh/L | 10 |
Vanadium–vanadium (sulphate) | 1.4 | ~800 | 25 Wh/L | |
Vanadium–vanadium (bromide) | 50 Wh/L | 2,000[91] | ||
Sodium–bromine polysulfide | 1.54 | ~800 | ||
Sodium–potassium[92] | ||||
Sulfur–oxygen-salt[93] | ||||
Zinc–bromine | 1.85 | ~1,000 | 75 Wh/kg | > 2,000 |
Lead–acid (methanesulfonate) | 1.82 | ~1,000 | ||
Zinc–cerium (methanesulfonate) | 2.43 | < 1,200–2,500 | ||
Zn-Mn(VI)/Mn(VII) | 1.2 | 60 Wh/L[38] |
Applications
editTechnical merits make redox flow batteries well-suited for large-scale energy storage. Flow batteries are normally considered for relatively large (1 kWh – 10 MWh) stationary applications with multi-hour charge-discharge cycles.[94] Flow batteries are not cost-efficient for shorter charge/discharge times. Market niches include:
- Grid storage - short and/or long-term energy storage for use by the grid
- Load balancing – the battery is attached to the grid to store power during off-peak hours and release it during peak demand periods. The common problem limiting this use of most flow battery chemistries is their low areal power (operating current density) which translates into high cost.
- Shifting energy from intermittent sources such as wind or solar for use during periods of peak demand.[95]
- Peak shaving, where demand spikes are met by the battery.[96][better source needed]
- UPS, where the battery is used if the main power fails to provide an uninterrupted supply.
- Power conversion – Because all cells share the same electrolyte(s), the electrolytes may be charged using a given number of cells and discharged with a different number. As battery voltage is proportional to the number of cells used, the battery can act as a powerful DC–DC converter. In addition, if the number of cells is continuously changed (on the input and/or output side) power conversion can also be AC/DC, AC/AC, or DC–AC with the frequency limited by that of the switching gear.[97]
- Electric vehicles – Because flow batteries can be rapidly "recharged" by replacing the electrolyte, they can be used for applications where the vehicle needs to take on energy as fast as a gas vehicle.[98][99] A common problem with most RFB chemistries in EV applications is their low energy density which translated into a short driving range. Zinc-chlorine batteries[100] and batteries with highly soluble halates are a notable exception.[101][better source needed]
- Stand-alone power system – An example of this is in cellphone base stations where no grid power is available. The battery can be used alongside solar or wind power sources to compensate for their fluctuating power levels and alongside a generator to save fuel.[102][103][better source needed]
See also
editReferences
edit- ^ a b Qi, Zhaoxiang; Koenig, Gary M. (12 May 2017). "Review Article: Flow battery systems with solid electroactive materials". Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena. 35 (4): 040801. Bibcode:2017JVSTB..35d0801Q. doi:10.1116/1.4983210. ISSN 2166-2746.
- ^ Badwal, Sukhvinder P. S.; Giddey, Sarbjit S.; Munnings, Christopher; Bhatt, Anand I.; Hollenkamp, Anthony F. (24 September 2014). "Emerging electrochemical energy conversion and storage technologies". Frontiers in Chemistry. 2: 79. Bibcode:2014FrCh....2...79B. doi:10.3389/fchem.2014.00079. PMC 4174133. PMID 25309898.
- ^ Alotto, P.; Guarnieri, M.; Moro, F. (2014). "Redox Flow Batteries for the storage of renewable energy: a review". Renewable & Sustainable Energy Reviews. 29: 325–335. Bibcode:2014RSERv..29..325A. doi:10.1016/j.rser.2013.08.001. hdl:11577/2682306.325-335&rft.date=2014&rft_id=info:hdl/11577/2682306&rft_id=info:doi/10.1016/j.rser.2013.08.001&rft_id=info:bibcode/2014RSERv..29..325A&rft.aulast=Alotto&rft.aufirst=P.&rft.au=Guarnieri, M.&rft.au=Moro, F.&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Hu, B.; Luo, J.; DeBruler C.; Hu, M; Wu, W.; Liu, T. L. (2019). Redox Active Inorganic Materials for Redox Flow Batteries in Encyclopedia of Inorganic and Bioinorganic Chemistry: Inorganic Battery Materials. pp. 1–25.1-25&rft.date=2019&rft.au=Hu, B.&rft.au=Luo, J.&rft.au=DeBruler C.&rft.au=Hu, M&rft.au=Wu, W.&rft.au=Liu, T. L.&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Luo, J.; Hu, B.; Hu, M.; Liu, T. L. (13 September 2019). "Status and Prospects of Organic Redox Flow Batteries towards Renewable Energy Storage". ACS Energy Lett. 2019, 4 (9): 2220–2240. doi:10.1021/acsenergylett.9b01332. S2CID 202210484.2220-2240&rft.date=2019-09-13&rft_id=info:doi/10.1021/acsenergylett.9b01332&rft_id=https://api.semanticscholar.org/CorpusID:202210484#id-name=S2CID&rft.au=Luo, J.&rft.au=Hu, B.&rft.au=Hu, M.&rft.au=Liu, T. L.&rft_id=https://pubs.acs.org/doi/abs/10.1021/acsenergylett.9b01332&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Clark, Elliot (17 November 2023). "What is a Calendar-life?". Energy Theory. Retrieved 3 May 2024.
- ^ Yuriy V. Tolmachev; Svetlana V. Starodubceva (2022). "Flow batteries with solid energy boosters". Electrochemical Science and Engineering. 12 (4): 731–766. doi:10.5599/jese.1363.731-766&rft.date=2022&rft_id=info:doi/10.5599/jese.1363&rft.au=Yuriy V. Tolmachev&rft.au=Svetlana V. Starodubceva&rft_id=https://doi.org/10.5599%2Fjese.1363&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ a b Tolmachev, Yuriy V. (1 March 2023). "Review—Flow Batteries from 1879 to 2022 and Beyond". Journal of the Electrochemical Society. 170 (3): 030505. Bibcode:2023JElS..170c0505T. doi:10.1149/1945-7111/acb8de. ISSN 0013-4651.
- ^ Amato, C. J. (1 February 1973). "A Zinc-Chloride Battery - The Missing Link to a Practical Electric Car". SAE Technical Paper Series (Report). Vol. 1. doi:10.4271/730248.
- ^ W. Kangro Dr, 1949.; W. Kangro Dr, 1954.;W. Kangro and H. Pieper, Electrochim Acta, 7 (4), 435-448 (1962)
- ^ E. R. Sum, M.; Skyllas-Kazacos, M., J Power Sources, 16 (2), 85-95 (1985); E. S.-K. Sum, M., J Power Sources, 15 (2-3), 179-190 (1985); M. Rychcik and M. Skyllas-Kazacos, J Power Sources, 19 (1), 45-54 (1987); M. Rychcik and M. Skyllas-Kazacos, J Power Sources, 22 (1), 59-67 (1988)
- ^ Kear, Gareth; Shah, Akeel A.; Walsh, Frank C. (September 2012). "Development of the all-vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects: All-vanadium redox flow battery for energy storage". International Journal of Energy Research. 36 (11): 1105–1120. doi:10.1002/er.1863.1105-1120&rft.date=2012-09&rft_id=info:doi/10.1002/er.1863&rft.aulast=Kear&rft.aufirst=Gareth&rft.au=Shah, Akeel A.&rft.au=Walsh, Frank C.&rft_id=https://onlinelibrary.wiley.com/doi/10.1002/er.1863&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ a b Kwabi, David G.; Ji, Yunlong; Aziz, Michael J. (22 July 2020). "Electrolyte Lifetime in Aqueous Organic Redox Flow Batteries: A Critical Review". Chemical Reviews. 120 (14): 6467–6489. doi:10.1021/acs.chemrev.9b00599. ISSN 0009-2665. OSTI 1799071. PMID 32053366.6467-6489&rft.date=2020-07-22&rft_id=info:pmid/32053366&rft.issn=0009-2665&rft_id=https://www.osti.gov/biblio/1799071#id-name=OSTI&rft_id=info:doi/10.1021/acs.chemrev.9b00599&rft.aulast=Kwabi&rft.aufirst=David G.&rft.au=Ji, Yunlong&rft.au=Aziz, Michael J.&rft_id=https://pubs.acs.org/doi/10.1021/acs.chemrev.9b00599&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ "World's largest flow battery connected to the grid in China". New Atlas. 3 October 2022. Retrieved 12 October 2022.
- ^ Rivero, Nicolás; Wright, Emily (26 November 2024). "These batteries could harness the wind and sun to replace coal and gas". washingtonpost.com.
- ^ Science-Dictionary.org. "Electroactive Substance Archived 27 August 2013 at the Wayback Machine" 14 May 2013.
- ^ JP patent S5671271A, Fujii, Toshinobu; Hirose, Takashi & Kondou, Naoki, "Metallohalogen secondary battery", published 1981-06-13, assigned to Meidensha Electric Mfg. Co. Ltd.
- ^ Aaron, Douglas (2013). "In Situ Kinetics Studies in All-Vanadium Redox Flow Batteries". ECS Electrochemistry Letters. 2 (3): A29 – A31. doi:10.1149/2.001303eel.A29 - A31&rft.date=2013&rft_id=info:doi/10.1149/2.001303eel&rft.aulast=Aaron&rft.aufirst=Douglas&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ McCreery, Richard L. (July 2008). "Advanced Carbon Electrode Materials for Molecular Electrochemistry". Chemical Reviews. 108 (7): 2646–2687. doi:10.1021/cr068076m. ISSN 0009-2665. PMID 18557655.2646-2687&rft.date=2008-07&rft.issn=0009-2665&rft_id=info:pmid/18557655&rft_id=info:doi/10.1021/cr068076m&rft.aulast=McCreery&rft.aufirst=Richard L.&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Arenas, L.F.; Ponce de León, C.; Walsh, F.C. (June 2017). "Engineering aspects of the design, construction and performance of modular redox flow batteries for energy storage" (PDF). Journal of Energy Storage. 11: 119–153. Bibcode:2017JEnSt..11..119A. doi:10.1016/j.est.2017.02.007.119-153&rft.date=2017-06&rft_id=info:doi/10.1016/j.est.2017.02.007&rft_id=info:bibcode/2017JEnSt..11..119A&rft.aulast=Arenas&rft.aufirst=L.F.&rft.au=Ponce de León, C.&rft.au=Walsh, F.C.&rft_id=https://eprints.soton.ac.uk/406710/1/Eng_RFB_Review_20_Feb_2017_eprints.pdf&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Tolmachev, Yuriy (10 January 2023). "Flow Batteries From 1879 To 2022 And Beyond". Qeios. doi:10.32388/G6G4EA.3.
- ^ Xu, Q.; Ji, Y.N.; Qin, L.Y.; Leung, P.K.; Qiao, F.; Li, Y.S.; Su, H.N. (2018). ""Evaluation of redox flow batteries goes beyond round-trip efficiency: A technical review"". Journal of Energy Storage. 16: 108–116. Bibcode:2018JEnSt..16..108X. doi:10.1016/j.est.2018.01.005.108-116&rft.date=2018&rft_id=info:doi/10.1016/j.est.2018.01.005&rft_id=info:bibcode/2018JEnSt..16..108X&rft.aulast=Xu&rft.aufirst=Q.&rft.au=Ji, Y.N.&rft.au=Qin, L.Y.&rft.au=Leung, P.K.&rft.au=Qiao, F.&rft.au=Li, Y.S.&rft.au=Su, H.N.&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Cho, Kyu Taek; Tucker, Michael C.; Ding, Markus; Ridgway, Paul; Battaglia, Vincent S.; Srinivasan, Venkat; Weber, Adam Z. (2015). "Cyclic Performance Analysis of Hydrogen/Bromine Flow Batteries for Grid-Scale Energy Storage". ChemPlusChem. 80 (2): 402–411. doi:10.1002/cplu.201402043. S2CID 97168677.402-411&rft.date=2015&rft_id=info:doi/10.1002/cplu.201402043&rft_id=https://api.semanticscholar.org/CorpusID:97168677#id-name=S2CID&rft.aulast=Cho&rft.aufirst=Kyu Taek&rft.au=Tucker, Michael C.&rft.au=Ding, Markus&rft.au=Ridgway, Paul&rft.au=Battaglia, Vincent S.&rft.au=Srinivasan, Venkat&rft.au=Weber, Adam Z.&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Yu; Tolmachev, V. (2013). "Hydrogen-halogen electrochemical cells: A review of applications and technologies". Russian Journal of Electrochemistry. 50 (4): 301–316. doi:10.1134/S1023193513120069. S2CID 97464125.301-316&rft.date=2013&rft_id=info:doi/10.1134/S1023193513120069&rft_id=https://api.semanticscholar.org/CorpusID:97464125#id-name=S2CID&rft.au=Yu&rft.au=Tolmachev, V.&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Tolmachev, Yuriy V. (2015). "Energy cycle based on a high specific energy aqueous flow battery and its potential use for fully electric vehicles and for direct solar-to-chemical energy conversion". Journal of Solid State Electrochemistry. 19 (9): 2711–2722. doi:10.1007/s10008-015-2805-z. S2CID 97853351.2711-2722&rft.date=2015&rft_id=info:doi/10.1007/s10008-015-2805-z&rft_id=https://api.semanticscholar.org/CorpusID:97853351#id-name=S2CID&rft.aulast=Tolmachev&rft.aufirst=Yuriy V.&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Linden, D.; Reddy, T.B. (2002). Handbook of Batteries (Eds.). McGraw-Hill.
- ^ Sun, Chuanyu; Zhang, Huan (10 January 2022). "Review of the Development of First-Generation Redox Flow Batteries: Iron-Chromium System". ChemSusChem. 15 (1): e202101798. Bibcode:2022ChSCh..15E1798S. doi:10.1002/cssc.202101798. ISSN 1864-5631. PMID 34724346.
- ^ Shiokawa, Y.; Yamana, H.; Moriyama, H. (2000). "An Application of Actinide Elements for a Redox Flow Battery". Journal of Nuclear Science and Technology. 37 (3): 253–256. Bibcode:2000JNST...37..253S. doi:10.1080/18811248.2000.9714891. S2CID 97891309.253-256&rft.date=2000&rft_id=https://api.semanticscholar.org/CorpusID:97891309#id-name=S2CID&rft_id=info:doi/10.1080/18811248.2000.9714891&rft_id=info:bibcode/2000JNST...37..253S&rft.aulast=Shiokawa&rft.aufirst=Y.&rft.au=Yamana, H.&rft.au=Moriyama, H.&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ US patent 567959, Borchers, William, "Process of transforming chemical energy of fuel into electrical energy", published 1896-09-22
- ^ DE patent 264026, Nernst, Walther, "Brennstoffelement mit unangreifbaren Elektroden [Fuel cell with impregnable electrodes]", published 1912-06-15
- ^ US patent 3682704, Keefer, Richard Mackay, "Redox fuel cell regenerated with sugar", published 1972-08-08, assigned to Electrocell Ltd.
- ^ Kummer, J. T.; Oei, D. -G. (1985). "A chemically regenerative redox fuel cell. II". Journal of Applied Electrochemistry. 15 (4): 619–629. doi:10.1007/BF01059304. S2CID 96195780.619-629&rft.date=1985&rft_id=info:doi/10.1007/BF01059304&rft_id=https://api.semanticscholar.org/CorpusID:96195780#id-name=S2CID&rft.aulast=Kummer&rft.aufirst=J. T.&rft.au=Oei, D. -G.&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Spagnuolo, G.; Petrone, G.; Mattavelli, P.; Guarnieri, M. (2016). "Vanadium Redox Flow Batteries: Potentials and Challenges of an Emerging Storage Technology". IEEE Industrial Electronics Magazine. 10 (4): 20–31. doi:10.1109/MIE.2016.2611760. hdl:11577/3217695. S2CID 28206437.20-31&rft.date=2016&rft_id=info:hdl/11577/3217695&rft_id=https://api.semanticscholar.org/CorpusID:28206437#id-name=S2CID&rft_id=info:doi/10.1109/MIE.2016.2611760&rft.aulast=Spagnuolo&rft.aufirst=G.&rft.au=Petrone, G.&rft.au=Mattavelli, P.&rft.au=Guarnieri, M.&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Bartolozzi, M. (1989). "Development of redox flow batteries. A historical bibliography". Journal of Power Sources. 27 (3): 219–234. Bibcode:1989JPS....27..219B. doi:10.1016/0378-7753(89)80037-0.219-234&rft.date=1989&rft_id=info:doi/10.1016/0378-7753(89)80037-0&rft_id=info:bibcode/1989JPS....27..219B&rft.aulast=Bartolozzi&rft.aufirst=M.&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Leung, P. K.; Ponce-De-León, C.; Low, C. T. J.; Shah, A. A.; Walsh, F. C. (2011). "Characterization of a zinc–cerium flow battery". Journal of Power Sources. 196 (11): 5174–5185. Bibcode:2011JPS...196.5174L. doi:10.1016/j.jpowsour.2011.01.095.5174-5185&rft.date=2011&rft_id=info:doi/10.1016/j.jpowsour.2011.01.095&rft_id=info:bibcode/2011JPS...196.5174L&rft.aulast=Leung&rft.aufirst=P. K.&rft.au=Ponce-De-León, C.&rft.au=Low, C. T. J.&rft.au=Shah, A. A.&rft.au=Walsh, F. C.&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Krishna, M.; Fraser, E. J.; Wills, R. G. A.; Walsh, F. C. (1 February 2018). "Developments in soluble lead flow batteries and remaining challenges: An illustrated review". Journal of Energy Storage. 15: 69–90. Bibcode:2018JEnSt..15...69K. doi:10.1016/j.est.2017.10.020. ISSN 2352-152X.69-90&rft.date=2018-02-01&rft.issn=2352-152X&rft_id=info:doi/10.1016/j.est.2017.10.020&rft_id=info:bibcode/2018JEnSt..15...69K&rft.aulast=Krishna&rft.aufirst=M.&rft.au=Fraser, E. J.&rft.au=Wills, R. G. A.&rft.au=Walsh, F. C.&rft_id=https://doi.org/10.1016%2Fj.est.2017.10.020&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Weng, Guo-Ming; Li, Chi-Ying Vanessa; Chan, Kwong-Yu; Lee, Cheuk-Wing; Zhong, Jin (2016). "Investigations of High Voltage Vanadium-Metal Hydride Flow Battery toward kWh Scale Storage with 100 cm 2 Electrodes". Journal of the Electrochemical Society. 163 (1): A5180 – A5187. doi:10.1149/2.0271601jes. ISSN 0013-4651.A5180 - A5187&rft.date=2016&rft_id=info:doi/10.1149/2.0271601jes&rft.issn=0013-4651&rft.aulast=Weng&rft.aufirst=Guo-Ming&rft.au=Li, Chi-Ying Vanessa&rft.au=Chan, Kwong-Yu&rft.au=Lee, Cheuk-Wing&rft.au=Zhong, Jin&rft_id=https://iopscience.iop.org/article/10.1149/2.0271601jes&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ a b Colli, Alejandro N.; Peljo, Pekka; Girault, Hubert H. (2016). "High energy density MnO4−/MnO42− redox couple for alkaline redox flow batteries" (PDF). Chemical Communications. 52 (97): 14039–14042. doi:10.1039/C6CC08070G. PMID 27853767.14039-14042&rft.date=2016&rft_id=info:doi/10.1039/C6CC08070G&rft_id=info:pmid/27853767&rft.aulast=Colli&rft.aufirst=Alejandro N.&rft.au=Peljo, Pekka&rft.au=Girault, Hubert H.&rft_id=http://infoscience.epfl.ch/record/222916/files/c6cc08070g.pdf&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Borghino, Dario (27 February 2015). "High-performance flow battery could rival lithium-ions for EVs and grid storage". Gizmag.
- ^ White, Frances (25 February 2015). "New flow battery to keep big cities lit, green and safe". R&D.
- ^ Weng, Guo-Ming (2017). "Unlocking the capacity of iodide for high-energy-density zinc/polyiodide and lithium/polyiodide redox flow batteries". Energy & Environmental Science. 10 (3): 735–741. doi:10.1039/C6EE03554J.735-741&rft.date=2017&rft_id=info:doi/10.1039/C6EE03554J&rft.aulast=Weng&rft.aufirst=Guo-Ming&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ "Proton flow battery simplifies hydrogen power". Gizmag.com. 13 February 2014. Retrieved 13 February 2014.
- ^ Andrews, J.; Seif Mohammadi, S. (2014). "Towards a 'proton flow battery': Investigation of a reversible PEM fuel cell with integrated metal-hydride hydrogen storage". International Journal of Hydrogen Energy. 39 (4): 1740–1751. Bibcode:2014IJHE...39.1740A. doi:10.1016/j.ijhydene.2013.11.010.1740-1751&rft.date=2014&rft_id=info:doi/10.1016/j.ijhydene.2013.11.010&rft_id=info:bibcode/2014IJHE...39.1740A&rft.aulast=Andrews&rft.aufirst=J.&rft.au=Seif Mohammadi, S.&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Brushett, Fikile; Vaughey, John; Jansen, Andrew (2012). "An All-Organic Non-aqueous Lithium-Ion Redox Flow Battery". Advanced Functional Materials. 2 (11): 1390–1396. Bibcode:2012AdEnM...2.1390B. doi:10.1002/aenm.201200322. S2CID 97300070.1390-1396&rft.date=2012&rft_id=https://api.semanticscholar.org/CorpusID:97300070#id-name=S2CID&rft_id=info:doi/10.1002/aenm.201200322&rft_id=info:bibcode/2012AdEnM...2.1390B&rft.aulast=Brushett&rft.aufirst=Fikile&rft.au=Vaughey, John&rft.au=Jansen, Andrew&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Bamgbopa, Musbaudeen O.; Shao-Horn, Yang; Almheiri, Saif (2017). "The potential of non-aqueous redox flow batteries as fast-charging capable energy storage solutions: demonstration with an iron–chromium acetylacetonate chemistry". Journal of Materials Chemistry A. 5 (26): 13457–13468. doi:10.1039/c7ta02022h. ISSN 2050-7488.13457-13468&rft.date=2017&rft_id=info:doi/10.1039/c7ta02022h&rft.issn=2050-7488&rft.aulast=Bamgbopa&rft.aufirst=Musbaudeen O.&rft.au=Shao-Horn, Yang&rft.au=Almheiri, Saif&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Luo, J.; Sam, A.; Hu, B.; DeBruler C.; Liu, T. L. (2017). "Unraveling pH Dependent Cycling Stability of Ferricyanide / Ferrocyanide in Redox Flow Batteries". Nano Energy. 2017, 42: 215–221. Bibcode:2017NEne...42..215L. doi:10.1016/j.nanoen.2017.10.057.215-221&rft.date=2017&rft_id=info:doi/10.1016/j.nanoen.2017.10.057&rft_id=info:bibcode/2017NEne...42..215L&rft.au=Luo, J.&rft.au=Sam, A.&rft.au=Hu, B.&rft.au=DeBruler C.&rft.au=Liu, T. L.&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Moss, Richard (22 December 2015). "New flow battery projected to cost 60% less than existing standard". www.gizmag.com. Retrieved 23 December 2015.
- ^ Liu, Tianbiao; Wei, Xiaoliang; Nie, Zimin; Sprenkle, Vincent; Wang, Wei (1 November 2015). "A Total Organic Aqueous Redox Flow Battery Employing a Low Cost and Sustainable Methyl Viologen Anolyte and 4-HO-TEMPO Catholyte". Advanced Energy Materials. 6 (3): 1501449. doi:10.1002/aenm.201501449. ISSN 1614-6840. S2CID 97838438.
- ^ Luo, J.; Hu, B.; DeBruler C.; Zhao, Y.; Yuan B.; Hu, M.; Wu, W.; Liu, T. L. (2019). "Unprecedented Capacity and Stability of Ammonium Ferrocyanide Catholyte in pH Neutral Aqueous Redox Flow Batteries". Joule. 4 (1): 149–163. Bibcode:2019Joule...3..149L. doi:10.1016/j.joule.2018.10.010.149-163&rft.date=2019&rft_id=info:doi/10.1016/j.joule.2018.10.010&rft_id=info:bibcode/2019Joule...3..149L&rft.au=Luo, J.&rft.au=Hu, B.&rft.au=DeBruler C.&rft.au=Zhao, Y.&rft.au=Yuan B.&rft.au=Hu, M.&rft.au=Wu, W.&rft.au=Liu, T. L.&rft_id=https://www.cell.com/joule/fulltext/S2542-4351(18)30472-0&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Gong, K; Fang, Q; Gu, S; Li, F.S.Y.; Yan, Y (2015). "Nonaqueous redox-flow batteries: organic solvents, supporting electrolytes, and redox pairs". Energy and Environmental Science. 8 (12): 3515–3530. doi:10.1039/C5EE02341F.3515-3530&rft.date=2015&rft_id=info:doi/10.1039/C5EE02341F&rft.aulast=Gong&rft.aufirst=K&rft.au=Fang, Q&rft.au=Gu, S&rft.au=Li, F.S.Y.&rft.au=Yan, Y&rft_id=https://doi.org/10.1039%2FC5EE02341F&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Xu, Yan; Wen, Yuehua; Cheng, Jie; Yanga, Yusheng; Xie, Zili; Cao, Gaoping (September 2009). "Novel organic redox flow batteries using soluble quinonoid compounds as positive materials". 2009 World Non-Grid-Connected Wind Power and Energy Conference. IEEE. pp. 1–4. doi:10.1109/wnwec.2009.5335870. ISBN 978-1-4244-4702-2.1-4&rft.pub=IEEE&rft.date=2009-09&rft_id=info:doi/10.1109/wnwec.2009.5335870&rft.isbn=978-1-4244-4702-2&rft.aulast=Xu&rft.aufirst=Yan&rft.au=Wen, Yuehua&rft.au=Cheng, Jie&rft.au=Yanga, Yusheng&rft.au=Xie, Zili&rft.au=Cao, Gaoping&rft_id=http://dx.doi.org/10.1109/wnwec.2009.5335870&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Xu, Yan; Wen, Yue-Hua; Cheng, Jie; Cao, Gao-Ping; Yang, Yu-Sheng (2010). "A study of tiron in aqueous solutions for redox flow battery application". Electrochimica Acta. 55 (3): 715–720. doi:10.1016/j.electacta.2009.09.031. ISSN 0013-4686.715-720&rft.date=2010&rft_id=info:doi/10.1016/j.electacta.2009.09.031&rft.issn=0013-4686&rft.aulast=Xu&rft.aufirst=Yan&rft.au=Wen, Yue-Hua&rft.au=Cheng, Jie&rft.au=Cao, Gao-Ping&rft.au=Yang, Yu-Sheng&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ WALD, MATTHEW L. (8 January 2014). "From Harvard, a Cheaper Storage Battery". New York Times. Retrieved 10 January 2014.
- ^ "Harvard team demonstrates new metal-free organic–inorganic aqueous flow battery; potential breakthrough for low-cost grid-scale storage". 11 January 2014.
- ^ Szondy, David (29 June 2014). "New water-based organic battery is cheap, rechargeable and eco-friendly". Gizmag.
- ^ "A rechargeable battery to power a home from rooftop solar panels". phys.org.
- ^ Matthew Gunther, ChemistryWorld. "Flow Battery Could Smooth Irregular Wind and Solar Energy Supply". Scientific American.
- ^ Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R.; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W.; Hardee, David; Gordon, Roy G.; Aziz, Michael J.; Marshak, Michael P. (25 September 2015). "Alkaline quinone flow battery". Science. 349 (6255): 1529–1532. Bibcode:2015Sci...349.1529L. doi:10.1126/science.aab3033. ISSN 0036-8075. PMID 26404834.1529-1532&rft.date=2015-09-25&rft_id=info:doi/10.1126/science.aab3033&rft.issn=0036-8075&rft_id=info:pmid/26404834&rft_id=info:bibcode/2015Sci...349.1529L&rft.aulast=Lin&rft.aufirst=Kaixiang&rft.au=Chen, Qing&rft.au=Gerhardt, Michael R.&rft.au=Tong, Liuchuan&rft.au=Kim, Sang Bok&rft.au=Eisenach, Louise&rft.au=Valle, Alvaro W.&rft.au=Hardee, David&rft.au=Gordon, Roy G.&rft.au=Aziz, Michael J.&rft.au=Marshak, Michael P.&rft_id=https://www.science.org/doi/10.1126/science.aab3033&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Borghino, Dario (30 September 2015). "Greener, safer flow battery could store renewable energy on the cheap". www.gizmag.com. Retrieved 8 December 2015.
- ^ a b Carretero-González, Javier; Castillo-Martínez, Elizabeth; Armand, Michel (2016). "Highly water-soluble three-redox state organic dyes as bifunctional analytes". Energy & Environmental Science. 9 (11): 3521–3530. doi:10.1039/C6EE01883A. ISSN 1754-5692.3521-3530&rft.date=2016&rft_id=info:doi/10.1039/C6EE01883A&rft.issn=1754-5692&rft.aulast=Carretero-González&rft.aufirst=Javier&rft.au=Castillo-Martínez, Elizabeth&rft.au=Armand, Michel&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ a b Winsberg, Jan; Stolze, Christian; Muench, Simon; Liedl, Ferenc; Hager, Martin D.; Schubert, Ulrich S. (11 November 2016). "TEMPO/Phenazine Combi-Molecule: A Redox-Active Material for Symmetric Aqueous Redox-Flow Batteries". ACS Energy Letters. 1 (5): 976–980. doi:10.1021/acsenergylett.6b00413. ISSN 2380-8195.976-980&rft.date=2016-11-11&rft_id=info:doi/10.1021/acsenergylett.6b00413&rft.issn=2380-8195&rft.aulast=Winsberg&rft.aufirst=Jan&rft.au=Stolze, Christian&rft.au=Muench, Simon&rft.au=Liedl, Ferenc&rft.au=Hager, Martin D.&rft.au=Schubert, Ulrich S.&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ a b Potash, Rebecca A.; McKone, James R.; Conte, Sean; Abruña, Héctor D. (2016). "On the Benefits of a Symmetric Redox Flow Battery". Journal of the Electrochemical Society. 163 (3): A338 – A344. doi:10.1149/2.0971602jes. ISSN 0013-4651. OSTI 1370440. S2CID 101469730.A338 - A344&rft.date=2016&rft.issn=0013-4651&rft_id=https://api.semanticscholar.org/CorpusID:101469730#id-name=S2CID&rft_id=https://www.osti.gov/biblio/1370440#id-name=OSTI&rft_id=info:doi/10.1149/2.0971602jes&rft.aulast=Potash&rft.aufirst=Rebecca A.&rft.au=McKone, James R.&rft.au=Conte, Sean&rft.au=Abruña, Héctor D.&rft_id=https://doi.org/10.1149%2F2.0971602jes&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Lavars, Nick (17 March 2022). "Symmetrical flow battery may strike right balance for grid-scale storage". New Atlas. Retrieved 18 March 2022.
- ^ Lavars, Nick (21 May 2021). "Candle compound brings high density to grid-scale battery technology". New Atlas. Retrieved 26 May 2021.
- ^ Feng, Ruozhu; Zhang, Xin; Murugesan, Vijayakumar; Hollas, Aaron; Chen, Ying; Shao, Yuyan; Walter, Eric; Wellala, Nadeesha P. N.; Yan, Litao; Rosso, Kevin M.; Wang, Wei (21 May 2021). "Reversible ketone hydrogenation and dehydrogenation for aqueous organic redox flow batteries". Science. 372 (6544): 836–840. Bibcode:2021Sci...372..836F. doi:10.1126/science.abd9795. ISSN 0036-8075. PMID 34016776. S2CID 234794555.836-840&rft.date=2021-05-21&rft_id=https://api.semanticscholar.org/CorpusID:234794555#id-name=S2CID&rft_id=info:bibcode/2021Sci...372..836F&rft.issn=0036-8075&rft_id=info:doi/10.1126/science.abd9795&rft_id=info:pmid/34016776&rft.aulast=Feng&rft.aufirst=Ruozhu&rft.au=Zhang, Xin&rft.au=Murugesan, Vijayakumar&rft.au=Hollas, Aaron&rft.au=Chen, Ying&rft.au=Shao, Yuyan&rft.au=Walter, Eric&rft.au=Wellala, Nadeesha P. N.&rft.au=Yan, Litao&rft.au=Rosso, Kevin M.&rft.au=Wang, Wei&rft_id=https://www.science.org/doi/10.1126/science.abd9795&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ a b c Robb, Brian H.; Farrell, Jason M.; Marshak, Michael P. (2019). "Chelated Chromium Electrolyte Enabling High-Voltage Aqueous Flow Batteries". Joule. 3 (10): 2503–2512. Bibcode:2019Joule...3.2503R. doi:10.1016/j.joule.2019.07.002.2503-2512&rft.date=2019&rft_id=info:doi/10.1016/j.joule.2019.07.002&rft_id=info:bibcode/2019Joule...3.2503R&rft.aulast=Robb&rft.aufirst=Brian H.&rft.au=Farrell, Jason M.&rft.au=Marshak, Michael P.&rft_id=https://doi.org/10.1016%2Fj.joule.2019.07.002&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ "Energy Storage: GridStar Flow". Lockheed Martin. Retrieved 27 July 2020.
- ^ "Chemists present an innovative redox-flow battery based on organic polymers and water". phys.org. 21 October 2015. Retrieved 6 December 2015.
- ^ Janoschka, Tobias; Martin, Norbert; Martin, Udo; Friebe, Christian; Morgenstern, Sabine; Hiller, Hannes; Hager, Martin D.; Schubert, Ulrich S. (2015). "An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials". Nature. 527 (7576): 78–81. Bibcode:2015Natur.527...78J. doi:10.1038/nature15746. PMID 26503039. S2CID 4393601.78-81&rft.date=2015&rft_id=info:doi/10.1038/nature15746&rft_id=https://api.semanticscholar.org/CorpusID:4393601#id-name=S2CID&rft_id=info:pmid/26503039&rft_id=info:bibcode/2015Natur.527...78J&rft.aulast=Janoschka&rft.aufirst=Tobias&rft.au=Martin, Norbert&rft.au=Martin, Udo&rft.au=Friebe, Christian&rft.au=Morgenstern, Sabine&rft.au=Hiller, Hannes&rft.au=Hager, Martin D.&rft.au=Schubert, Ulrich S.&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Janoschka, Tobias; Martin, Norbert; Martin, Udo; Friebe, Christian; Morgenstern, Sabine; Hiller, Hannes; Hager, Martin D.; Schubert, Ulrich S. (2015). "An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials". Nature. 527 (7576): 78–81. Bibcode:2015Natur.527...78J. doi:10.1038/nature15746. PMID 26503039. S2CID 4393601.78-81&rft.date=2015&rft_id=info:doi/10.1038/nature15746&rft_id=https://api.semanticscholar.org/CorpusID:4393601#id-name=S2CID&rft_id=info:pmid/26503039&rft_id=info:bibcode/2015Natur.527...78J&rft.aulast=Janoschka&rft.aufirst=Tobias&rft.au=Martin, Norbert&rft.au=Martin, Udo&rft.au=Friebe, Christian&rft.au=Morgenstern, Sabine&rft.au=Hiller, Hannes&rft.au=Hager, Martin D.&rft.au=Schubert, Ulrich S.&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Bamgbopa, Musbaudeen O.; Almheiri, Saif; Sun, Hong (2017). "Prospects of recently developed membraneless cell designs for redox flow batteries". Renewable and Sustainable Energy Reviews. 70: 506–518. Bibcode:2017RSERv..70..506B. doi:10.1016/j.rser.2016.11.234. ISSN 1364-0321.506-518&rft.date=2017&rft.issn=1364-0321&rft_id=info:doi/10.1016/j.rser.2016.11.234&rft_id=info:bibcode/2017RSERv..70..506B&rft.aulast=Bamgbopa&rft.aufirst=Musbaudeen O.&rft.au=Almheiri, Saif&rft.au=Sun, Hong&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Braff, William A.; Bazant, Martin Z.; Buie, Cullen R. (2013). "New rechargeable flow battery enables cheaper, large-scale energy storage". Nature Communications. 4: 2346. arXiv:1404.0917. Bibcode:2013NatCo...4.2346B. doi:10.1038/ncomms3346. PMID 23949161. S2CID 14719469. Retrieved 20 August 2013.
- ^ a b c Braff, W. A.; Bazant, M. Z.; Buie, C. R. (2013). "Membrane-less hydrogen bromine flow battery". Nature Communications. 4: 2346. arXiv:1404.0917. Bibcode:2013NatCo...4.2346B. doi:10.1038/ncomms3346. PMID 23949161. S2CID 14719469.
- ^ Bamgbopa, Musbaudeen O.; Shao-Horn, Yang; Hashaikeh, Raed; Almheiri, Saif (2018). "Cyclable membraneless redox flow batteries based on immiscible liquid electrolytes: Demonstration with all-iron redox chemistry". Electrochimica Acta. 267: 41–50. doi:10.1016/j.electacta.2018.02.063. ISSN 0013-4686.41-50&rft.date=2018&rft_id=info:doi/10.1016/j.electacta.2018.02.063&rft.issn=0013-4686&rft.aulast=Bamgbopa&rft.aufirst=Musbaudeen O.&rft.au=Shao-Horn, Yang&rft.au=Hashaikeh, Raed&rft.au=Almheiri, Saif&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Qi, Zhaoxiang; Koenig, Gary M. (2017). "Review Article: Flow battery systems with solid electroactive materials". Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena. 35 (4): 040801. Bibcode:2017JVSTB..35d0801Q. doi:10.1116/1.4983210. ISSN 2166-2746.
- ^ Kevin Bullis (24 April 2014). "Nanoparticle Networks Promise Cheaper Batteries for Storing Renewable Energy". MIT Technology Review. Retrieved 24 September 2014.
- ^ Duduta, Mihai (May 2011). "Semi-Solid Lithium Rechargeable Flow Battery". Advanced Energy Materials. 1 (4): 511–516. Bibcode:2011AdEnM...1..511D. doi:10.1002/aenm.201100152. S2CID 97634258.511-516&rft.date=2011-05&rft_id=https://api.semanticscholar.org/CorpusID:97634258#id-name=S2CID&rft_id=info:doi/10.1002/aenm.201100152&rft_id=info:bibcode/2011AdEnM...1..511D&rft.aulast=Duduta&rft.aufirst=Mihai&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Qi, Zhaoxiang; Koenig Jr., Gary M. (15 August 2016). "A carbon-free lithium-ion solid dispersion redox couple with low viscosity for redox flow batteries". Journal of Power Sources. 323: 97–106. Bibcode:2016JPS...323...97Q. doi:10.1016/j.jpowsour.2016.05.033.97-106&rft.date=2016-08-15&rft_id=info:doi/10.1016/j.jpowsour.2016.05.033&rft_id=info:bibcode/2016JPS...323...97Q&rft.aulast=Qi&rft.aufirst=Zhaoxiang&rft.au=Koenig Jr., Gary M.&rft_id=https://doi.org/10.1016%2Fj.jpowsour.2016.05.033&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Qi, Zhaoxiang; Liu, Aaron L.; Koenig Jr, Gary M. (20 February 2017). "Carbon-free Solid Dispersion LiCoO2 Redox Couple Characterization and Electrochemical Evaluation for All Solid Dispersion Redox Flow Batteries". Electrochimica Acta. 228: 91–99. doi:10.1016/j.electacta.2017.01.061.91-99&rft.date=2017-02-20&rft_id=info:doi/10.1016/j.electacta.2017.01.061&rft.aulast=Qi&rft.aufirst=Zhaoxiang&rft.au=Liu, Aaron L.&rft.au=Koenig Jr, Gary M.&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Chandler, David L. (23 August 2011). "Go with the Flow – Cambridge Crude". Technology Review.
- ^ Darpa Nanoelectrofuel Flow Battery, 18 March 2022, retrieved 9 August 2022
- ^ Blain, Loz (9 August 2022). "Influit moves to commercialize its ultra-high density liquid batteries". New Atlas. Retrieved 9 August 2022.
- ^ Yan, Ruiting; Wang, Qing (November 2018). "Redox-Targeting-Based Flow Batteries for Large-Scale Energy Storage". Advanced Materials. 30 (47): e1802406. Bibcode:2018AdM....3002406Y. doi:10.1002/adma.201802406. ISSN 0935-9648. PMID 30118550.
- ^ Ye, Jiaye; Xia, Lu; Wu, Chun; Ding, Mei; Jia, Chuankun; Wang, Qing (30 October 2019). "Redox targeting-based flow batteries". Journal of Physics D: Applied Physics. 52 (44): 443001. Bibcode:2019JPhD...52R3001Y. doi:10.1088/1361-6463/ab3251. ISSN 0022-3727.
- ^ Li, Xianfeng (September 2019). "Redox Targeting Improves Flow Batteries". Joule. 3 (9): 2066–2067. Bibcode:2019Joule...3.2066L. doi:10.1016/j.joule.2019.08.020.2066-2067&rft.date=2019-09&rft_id=info:doi/10.1016/j.joule.2019.08.020&rft_id=info:bibcode/2019Joule...3.2066L&rft.aulast=Li&rft.aufirst=Xianfeng&rft_id=https://linkinghub.elsevier.com/retrieve/pii/S2542435119304234&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Zhou, Mingyue; Chen, Yan; Salla, Manohar; Zhang, Hang; Wang, Xun; Mothe, Srinivasa Reddy; Wang, Qing (17 August 2020). "Single-Molecule Redox-Targeting Reactions for a pH-Neutral Aqueous Organic Redox Flow Battery". Angewandte Chemie International Edition. 59 (34): 14286–14291. doi:10.1002/anie.202004603. ISSN 1433-7851. PMID 32510721.14286-14291&rft.date=2020-08-17&rft.issn=1433-7851&rft_id=info:pmid/32510721&rft_id=info:doi/10.1002/anie.202004603&rft.aulast=Zhou&rft.aufirst=Mingyue&rft.au=Chen, Yan&rft.au=Salla, Manohar&rft.au=Zhang, Hang&rft.au=Wang, Xun&rft.au=Mothe, Srinivasa Reddy&rft.au=Wang, Qing&rft_id=https://onlinelibrary.wiley.com/doi/10.1002/anie.202004603&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Wang, Xun; Zhou, Mingyue; Zhang, Feifei; Zhang, Hang; Wang, Qing (October 2021). "Redox targeting of energy materials". Current Opinion in Electrochemistry. 29: 100743. doi:10.1016/j.coelec.2021.100743.
- ^ Zhang, Feifei; Gao, Mengqi; Huang, Shiqiang; Zhang, Hang; Wang, Xun; Liu, Lijun; Han, Ming; Wang, Qing (June 2022). "Redox Targeting of Energy Materials for Energy Storage and Conversion". Advanced Materials. 34 (25): e2104562. Bibcode:2022AdM....3404562Z. doi:10.1002/adma.202104562. ISSN 0935-9648. PMID 34595770.
- ^ "130 million publications organized by topic on ResearchGate". Retrieved 21 May 2023.
- ^ Tolmachev, Yuriy; Starodubceva, Svetlana V. (18 September 2022). "Flow batteries with solid energy boosters: Review Paper". Journal of Electrochemical Science and Engineering. 12 (4): 731–766. doi:10.5599/jese.1363. ISSN 1847-9286.731-766&rft.date=2022-09-18&rft_id=info:doi/10.5599/jese.1363&rft.issn=1847-9286&rft.aulast=Tolmachev&rft.aufirst=Yuriy&rft.au=Starodubceva, Svetlana V.&rft_id=https://www.pub.iapchem.org/ojs/index.php/JESE/article/view/1363&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Badwal, Sukhvinder P. S.; Giddey, Sarbjit S.; Munnings, Christopher; Bhatt, Anand I.; Hollenkamp, Anthony F. (24 September 2014). "Emerging electrochemical energy conversion and storage technologies". Frontiers in Chemistry. 2: 79. Bibcode:2014FrCh....2...79B. doi:10.3389/fchem.2014.00079. PMC 4174133. PMID 25309898.
- ^ Bush, Steve (20 July 2018). "Room-temperature flow battery uses liquid sodium-potassium alloy".
- ^ Li, Zheng; Sam Pan, Menghsuan; Su, Liang; Tsai, Ping-Chun; Badel, Andres F.; Valle, Joseph M.; Eiler, Stephanie L.; Xiang, Kai; Brushett, Fikile R.; Chiang, Yet-Ming (11 October 2017). "Air-Breathing Aqueous Sulfur Flow Battery for Ultralow-Cost Long-Duration Electrical Storage". Joule. 1 (2): 306–327. Bibcode:2017Joule...1..306L. doi:10.1016/j.joule.2017.08.007.306-327&rft.date=2017-10-11&rft_id=info:doi/10.1016/j.joule.2017.08.007&rft_id=info:bibcode/2017Joule...1..306L&rft.aulast=Li&rft.aufirst=Zheng&rft.au=Sam Pan, Menghsuan&rft.au=Su, Liang&rft.au=Tsai, Ping-Chun&rft.au=Badel, Andres F.&rft.au=Valle, Joseph M.&rft.au=Eiler, Stephanie L.&rft.au=Xiang, Kai&rft.au=Brushett, Fikile R.&rft.au=Chiang, Yet-Ming&rft_id=https://doi.org/10.1016%2Fj.joule.2017.08.007&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Service, R.F. (2 November 2018). "Advances in flow batteries promise cheap backup power". Science. 362 (6414): 508–509. Bibcode:2018Sci...362..508S. doi:10.1126/science.362.6414.508. PMID 30385552. S2CID 53218660.508-509&rft.date=2018-11-02&rft_id=info:doi/10.1126/science.362.6414.508&rft_id=https://api.semanticscholar.org/CorpusID:53218660#id-name=S2CID&rft_id=info:pmid/30385552&rft_id=info:bibcode/2018Sci...362..508S&rft.aulast=Service&rft.aufirst=R.F.&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ REDT Energy. "Storing Renewable Energy". Archived from the original on 1 February 2014. Retrieved 27 January 2014.
- ^ "Redflow – Sustainable Energy Storage". Archived from the original on 9 February 2010.
- ^ in WO patent 03043170, Spaziante, Placido Maria; Kampanatsanyakorn, Krisada & Zocchi, Andrea, "System for storing and/or transforming energy from sources at variable voltage and frequency", published 2003-05-22, assigned to Squirrel Holdings Ltd.
- ^ "Electric Vehicle Refuelling System (EVRS) used in conjunction with Vanadium Redox Flow Technology". REDT Energy Storage. Archived from the original on 10 December 2011.
- ^ Antony Ingram (11 October 2016). "nanoFLOWCELL-powered Quant e-Limo approved for german road trials". Fox News.
- ^ Amato, C. J. (1 February 1973). "A Zinc-Chloride Battery - The Missing Link to a Practical Electric Car". SAE Technical Paper Series. Vol. 1. doi:10.4271/730248 – via www.sae.org.
- ^ Tolmachev, Yuriy V.; Piatkivskyi, Andrii; Ryzhov, Victor V.; Konev, Dmitry V.; Vorotyntsev, Mikhail A. (2015). "Energy cycle based on a high specific energy aqueous flow battery and its potential use for fully electric vehicles and for direct solar-to-chemical energy conversion". Journal of Solid State Electrochemistry. 19 (9): 2711–2722. doi:10.1007/s10008-015-2805-z. S2CID 97853351.2711-2722&rft.date=2015&rft_id=info:doi/10.1007/s10008-015-2805-z&rft_id=https://api.semanticscholar.org/CorpusID:97853351#id-name=S2CID&rft.aulast=Tolmachev&rft.aufirst=Yuriy V.&rft.au=Piatkivskyi, Andrii&rft.au=Ryzhov, Victor V.&rft.au=Konev, Dmitry V.&rft.au=Vorotyntsev, Mikhail A.&rfr_id=info:sid/en.wikipedia.org:Flow battery" class="Z3988">
- ^ Talk by John Davis of Deeya energy about their flow battery's use in the telecomms industry on YouTube
- ^ "Performance Testing of Zinc–Bromine Flow Batteries for Remote Telecom Sites" (PDF). Retrieved 21 May 2023.