In convex analysis, the Fenchel–Moreau theorem (named after Werner Fenchel and Jean Jacques Moreau) or Fenchel biconjugation theorem (or just biconjugation theorem) is a theorem which gives necessary and sufficient conditions for a function to be equal to its biconjugate. This is in contrast to the general property that for any function .[1][2] This can be seen as a generalization of the bipolar theorem.[1] It is used in duality theory to prove strong duality (via the perturbation function).
Statement
editLet be a Hausdorff locally convex space, for any extended real valued function it follows that if and only if one of the following is true
- is a proper, lower semi-continuous, and convex function,
- , or
- .[1][3][4]
References
edit- ^ a b c Borwein, Jonathan; Lewis, Adrian (2006). Convex Analysis and Nonlinear Optimization: Theory and Examples (2 ed.). Springer. pp. 76–77. ISBN 9780387295701.76-77&rft.edition=2&rft.pub=Springer&rft.date=2006&rft.isbn=9780387295701&rft.aulast=Borwein&rft.aufirst=Jonathan&rft.au=Lewis, Adrian&rfr_id=info:sid/en.wikipedia.org:Fenchel–Moreau theorem" class="Z3988">
- ^ Zălinescu, Constantin (2002). Convex analysis in general vector spaces. River Edge, NJ: World Scientific Publishing Co., Inc. pp. 75–79. ISBN 981-238-067-1. MR 1921556.75-79&rft.pub=World Scientific Publishing Co., Inc.&rft.date=2002&rft.isbn=981-238-067-1&rft_id=https://mathscinet.ams.org/mathscinet-getitem?mr=1921556#id-name=MR&rft.aulast=Zălinescu&rft.aufirst=Constantin&rfr_id=info:sid/en.wikipedia.org:Fenchel–Moreau theorem" class="Z3988">
- ^ Hang-Chin Lai; Lai-Jui Lin (May 1988). "The Fenchel-Moreau Theorem for Set Functions". Proceedings of the American Mathematical Society. 103 (1). American Mathematical Society: 85–90. doi:10.2307/2047532. JSTOR 2047532.85-90&rft.date=1988-05&rft_id=info:doi/10.2307/2047532&rft_id=https://www.jstor.org/stable/2047532#id-name=JSTOR&rft.au=Hang-Chin Lai&rft.au=Lai-Jui Lin&rft_id=https://doi.org/10.2307%2F2047532&rfr_id=info:sid/en.wikipedia.org:Fenchel–Moreau theorem" class="Z3988">
- ^ Shozo Koshi; Naoto Komuro (1983). "A generalization of the Fenchel–Moreau theorem". Proc. Japan Acad. Ser. A Math. Sci.. 59 (5): 178–181.Proc. Japan Acad. Ser. A Math. Sci.&rft.atitle=A generalization of the Fenchel–Moreau theorem&rft.volume=59&rft.issue=5&rft.pages=178-181&rft.date=1983&rft.au=Shozo Koshi&rft.au=Naoto Komuro&rfr_id=info:sid/en.wikipedia.org:Fenchel–Moreau theorem" class="Z3988">