Electrostatic–pneumatic activation

(Redirected from Electrostatic-Pneumatic)

Electrostatic–pneumatic activation is an actuation method for shaping thin membranes for microelectromechanical and microoptoelectromechanical systems.[1][2] This method benefits from operation at high speed and low power consumption.[3] It can also cause large deflection on thin membranes. Electrostatic-pneumatic MEMS devices usually consist of two membranes with a sealed cavity in between. One membrane-calling actuator deflects into the cavity by electrostatic pressure to compress air and increase air pressure. Elevated pressure pushes the other membrane and causes a dome shape. With direct electrostatic actuation on the membrane, a concave shape is achieved.

This method is used in MEMS deformable mirrors[4][5] [6][7][8] to create convex and concave mirrors.[9] Electrostatic-pneumatic actuation can double maximum displacement of a thin membrane compared to only electrostatic actuated membrane.[10]

Moreover, mechanical advantage[11] is possible by use of electrostatic-pneumatic actuation. Since the cavity is filled with air, mechanical amplification is lower than hydraulic machinery with a non-compressible fluid.

References

edit
  1. ^ K. J. Gabriel, O. Tabata, K. Shimaoka, S. Sugiyama, H. Fujita "Surface normal electrostatic/pneumatic actuator" Micro Electro Mechanical Systems 92 Travemunde (Germany), Feb. 1992
  2. ^ Cleopatra Cabuz, Thomas R. Ohnstein, Michael R. Elgersma (2000), "Electrostatic/pneumatic actuator for active surfaces" US Patent No. 09/573,460
  3. ^ Moghimi, M. J. Chattergoon, K. N. Dickensheets, D. L. “High speed focus control capability of electrostatic–pneumatic MEMS deformable mirrors” in Proc. SPIE 8977, MOEMS and Miniaturized Systems XIII, San Francisco, CA, Mar. 2014, pp. 897709, 897709-9
  4. ^ Bifano, Thomas (2011). "Adaptive imaging: MEMS deformable mirrors". Nature Photonics. 5 (1): 21–23. Bibcode:2011NaPho...5...21B. doi:10.1038/nphoton.2010.297.21-23&rft.date=2011&rft_id=info:doi/10.1038/nphoton.2010.297&rft_id=info:bibcode/2011NaPho...5...21B&rft.aulast=Bifano&rft.aufirst=Thomas&rfr_id=info:sid/en.wikipedia.org:Electrostatic–pneumatic activation" class="Z3988">
  5. ^ Moghimi, Mohammad J.; Chattergoon, Krishna N.; Wilson, Chris R.; Dickensheets, David L. (Aug 2013). "High Speed Focus Control MEMS Mirror With Controlled Air Damping for Vital Microscopy". Journal of Microelectromechanical Systems. 22 (4): 938–948. doi:10.1109/JMEMS.2013.2251320. S2CID 28537628.938-948&rft.date=2013-08&rft_id=info:doi/10.1109/JMEMS.2013.2251320&rft_id=https://api.semanticscholar.org/CorpusID:28537628#id-name=S2CID&rft.aulast=Moghimi&rft.aufirst=Mohammad J.&rft.au=Chattergoon, Krishna N.&rft.au=Wilson, Chris R.&rft.au=Dickensheets, David L.&rfr_id=info:sid/en.wikipedia.org:Electrostatic–pneumatic activation" class="Z3988">
  6. ^ Moghimi, Mohammad J (1 April 2011). "MOEMS deformable mirrors for focus control in vital microscopy". Journal of Micro/Nanolithography, MEMS, and MOEMS. 10 (2): 023005. doi:10.1117/1.3574129. Retrieved 1 April 2011.
  7. ^ "mirao™ 52-e Deformable Mirror". 21 June 2023.
  8. ^ "MFC Series MEMS Adjustable Focus Mirrors".
  9. ^ Moghimi, M. J. Wilson, C. Dickensheets, D. L. “Electrostatic-pneumatic membrane mirror with positive or negative variable optical power” in Proc. SPIE 8617, MEMS Adaptive Optics VII, San Francisco, CA, Mar. 2013, pp. 861707-1, 861707-9
  10. ^ Moghimi, M. J. Wilson, C. R. Dickensheets, D. L., “Electrostatic-pneumatic MEMS deformable mirror for focus control” 2012 International Conference on Optical MEMS and Nanophotonics (OMN), Banff, Canada, August 2012, pp. 132-133.
  11. ^ Bansal, R. K. (1 Jan 2004). A TextBook of Theory of Machines. Firewall Media. ISBN 9788170084181.