Cox–Ingersoll–Ross model

In mathematical finance, the Cox–Ingersoll–Ross (CIR) model describes the evolution of interest rates. It is a type of "one factor model" (short-rate model) as it describes interest rate movements as driven by only one source of market risk. The model can be used in the valuation of interest rate derivatives. It was introduced in 1985[1] by John C. Cox, Jonathan E. Ingersoll and Stephen A. Ross as an extension of the Vasicek model, itself an Ornstein–Uhlenbeck process.

Three trajectories of CIR processes

The model

edit
 
CIR process

The CIR model describes the instantaneous interest rate   with a Feller square-root process, whose stochastic differential equation is

 

where   is a Wiener process (modelling the random market risk factor) and  ,  , and   are the parameters. The parameter   corresponds to the speed of adjustment to the mean  , and   to volatility. The drift factor,  , is exactly the same as in the Vasicek model. It ensures mean reversion of the interest rate towards the long run value  , with speed of adjustment governed by the strictly positive parameter  .

The standard deviation factor,  , avoids the possibility of negative interest rates for all positive values of   and  . An interest rate of zero is also precluded if the condition

 

is met. More generally, when the rate ( ) is close to zero, the standard deviation ( ) also becomes very small, which dampens the effect of the random shock on the rate. Consequently, when the rate gets close to zero, its evolution becomes dominated by the drift factor, which pushes the rate upwards (towards equilibrium).

In the case  ,[2] the Feller square-root process can be obtained from the square of an Ornstein–Uhlenbeck process. It is ergodic and possesses a stationary distribution. It is used in the Heston model to model stochastic volatility.

Distribution

edit
  • Future distribution
The distribution of future values of a CIR process can be computed in closed form:
 
where  , and Y is a non-central chi-squared distribution with   degrees of freedom and non-centrality parameter  . Formally the probability density function is:
 
where  ,  ,  , and   is a modified Bessel function of the first kind of order  .
  • Asymptotic distribution
Due to mean reversion, as time becomes large, the distribution of   will approach a gamma distribution with the probability density of:
 
where   and  .
Derivation of asymptotic distribution

To derive the asymptotic distribution   for the CIR model, we must use the Fokker-Planck equation:

 

Our interest is in the particular case when  , which leads to the simplified equation:

 

Defining   and   and rearranging terms leads to the equation:

 

Integrating shows us that:

 

Over the range  , this density describes a gamma distribution. Therefore, the asymptotic distribution of the CIR model is a gamma distribution.

Properties

edit
  • Mean reversion,
  • Level dependent volatility ( ),
  • For given positive   the process will never touch zero, if  ; otherwise it can occasionally touch the zero point,
  •  , so long term mean is  ,
  •  

Calibration

edit
The continuous SDE can be discretized as follows
 
which is equivalent to
 
provided   is n.i.i.d. (0,1). This equation can be used for a linear regression.

Simulation

edit

Stochastic simulation of the CIR process can be achieved using two variants:

Bond pricing

edit

Under the no-arbitrage assumption, a bond may be priced using this interest rate process. The bond price is exponential affine in the interest rate:

 

where

 
 
 

Extensions

edit

The CIR model uses a special case of a basic affine jump diffusion, which still permits a closed-form expression for bond prices. Time varying functions replacing coefficients can be introduced in the model in order to make it consistent with a pre-assigned term structure of interest rates and possibly volatilities. The most general approach is in Maghsoodi (1996).[3] A more tractable approach is in Brigo and Mercurio (2001b)[4] where an external time-dependent shift is added to the model for consistency with an input term structure of rates.

A significant extension of the CIR model to the case of stochastic mean and stochastic volatility is given by Lin Chen (1996) and is known as Chen model. A more recent extension for handling cluster volatility, negative interest rates and different distributions is the so-called "CIR #" by Orlando, Mininni and Bufalo (2018,[5] 2019,[6][7] 2020,[8] 2021,[9] 2023[10]) and a simpler extension focussing on negative interest rates was proposed by Di Francesco and Kamm (2021,[11] 2022[12]), which are referred to as the CIR- and CIR-- models.

See also

edit

References

edit
  1. ^ "A Theory of the Term Structure of Interest Rates - The Econometric Society". www.econometricsociety.org. Retrieved 2023-10-14.
  2. ^ Yuliya Mishura, Andrey Pilipenko & Anton Yurchenko-Tytarenko(10 Jan 2024): Low-dimensional Cox-Ingersoll-Ross process, Stochastics, DOI:10.1080/17442508.2023.2300291
  3. ^ Maghsoodi, Yoosef (January 1996). "Solution of the Extended Cir Term Structure and Bond Option Valuation". Mathematical Finance. 6 (1): 89–109. doi:10.1111/j.1467-9965.1996.tb00113.x. ISSN 0960-1627.89-109&rft.date=1996-01&rft_id=info:doi/10.1111/j.1467-9965.1996.tb00113.x&rft.issn=0960-1627&rft.aulast=Maghsoodi&rft.aufirst=Yoosef&rft_id=https://onlinelibrary.wiley.com/doi/10.1111/j.1467-9965.1996.tb00113.x&rfr_id=info:sid/en.wikipedia.org:Cox–Ingersoll–Ross model" class="Z3988">
  4. ^ Brigo, Damiano; Mercurio, Fabio (2001-07-01). "A deterministic–shift extension of analytically–tractable and time–homogeneous short–rate models". Finance and Stochastics. 5 (3): 369–387. doi:10.1007/PL00013541. ISSN 0949-2984. S2CID 35316609.369-387&rft.date=2001-07-01&rft_id=https://api.semanticscholar.org/CorpusID:35316609#id-name=S2CID&rft.issn=0949-2984&rft_id=info:doi/10.1007/PL00013541&rft.aulast=Brigo&rft.aufirst=Damiano&rft.au=Mercurio, Fabio&rft_id=https://doi.org/10.1007/PL00013541&rfr_id=info:sid/en.wikipedia.org:Cox–Ingersoll–Ross model" class="Z3988">
  5. ^ Orlando, Giuseppe; Mininni, Rosa Maria; Bufalo, Michele (2018). "A New Approach to CIR Short-Term Rates Modelling". New Methods in Fixed Income Modeling. Contributions to Management Science. Springer International Publishing. pp. 35–43. doi:10.1007/978-3-319-95285-7_2. ISBN 978-3-319-95284-0.35-43&rft.pub=Springer International Publishing&rft.date=2018&rft_id=info:doi/10.1007/978-3-319-95285-7_2&rft.isbn=978-3-319-95284-0&rft.aulast=Orlando&rft.aufirst=Giuseppe&rft.au=Mininni, Rosa Maria&rft.au=Bufalo, Michele&rfr_id=info:sid/en.wikipedia.org:Cox–Ingersoll–Ross model" class="Z3988">
  6. ^ Orlando, Giuseppe; Mininni, Rosa Maria; Bufalo, Michele (1 January 2019). "A new approach to forecast market interest rates through the CIR model". Studies in Economics and Finance. 37 (2): 267–292. doi:10.1108/SEF-03-2019-0116. ISSN 1086-7376. S2CID 204424299.267-292&rft.date=2019-01-01&rft_id=https://api.semanticscholar.org/CorpusID:204424299#id-name=S2CID&rft.issn=1086-7376&rft_id=info:doi/10.1108/SEF-03-2019-0116&rft.aulast=Orlando&rft.aufirst=Giuseppe&rft.au=Mininni, Rosa Maria&rft.au=Bufalo, Michele&rfr_id=info:sid/en.wikipedia.org:Cox–Ingersoll–Ross model" class="Z3988">
  7. ^ Orlando, Giuseppe; Mininni, Rosa Maria; Bufalo, Michele (19 August 2019). "Interest rates calibration with a CIR model". The Journal of Risk Finance. 20 (4): 370–387. doi:10.1108/JRF-05-2019-0080. ISSN 1526-8633. S2CID 204435499.370-387&rft.date=2019-08-19&rft_id=https://api.semanticscholar.org/CorpusID:204435499#id-name=S2CID&rft.issn=1526-8633&rft_id=info:doi/10.1108/JRF-05-2019-0080&rft.aulast=Orlando&rft.aufirst=Giuseppe&rft.au=Mininni, Rosa Maria&rft.au=Bufalo, Michele&rfr_id=info:sid/en.wikipedia.org:Cox–Ingersoll–Ross model" class="Z3988">
  8. ^ Orlando, Giuseppe; Mininni, Rosa Maria; Bufalo, Michele (July 2020). "Forecasting interest rates through Vasicek and CIR models: A partitioning approach". Journal of Forecasting. 39 (4): 569–579. arXiv:1901.02246. doi:10.1002/for.2642. ISSN 0277-6693. S2CID 126507446.569-579&rft.date=2020-07&rft_id=info:arxiv/1901.02246&rft_id=https://api.semanticscholar.org/CorpusID:126507446#id-name=S2CID&rft.issn=0277-6693&rft_id=info:doi/10.1002/for.2642&rft.aulast=Orlando&rft.aufirst=Giuseppe&rft.au=Mininni, Rosa Maria&rft.au=Bufalo, Michele&rft_id=https://onlinelibrary.wiley.com/doi/10.1002/for.2642&rfr_id=info:sid/en.wikipedia.org:Cox–Ingersoll–Ross model" class="Z3988">
  9. ^ Orlando, Giuseppe; Bufalo, Michele (2021-05-26). "Interest rates forecasting: Between Hull and White and the CIR#—How to make a single-factor model work". Journal of Forecasting. 40 (8): 1566–1580. doi:10.1002/for.2783. ISSN 0277-6693.1566-1580&rft.date=2021-05-26&rft_id=info:doi/10.1002/for.2783&rft.issn=0277-6693&rft.aulast=Orlando&rft.aufirst=Giuseppe&rft.au=Bufalo, Michele&rft_id=https://doi.org/10.1002%2Ffor.2783&rfr_id=info:sid/en.wikipedia.org:Cox–Ingersoll–Ross model" class="Z3988">
  10. ^ Orlando, Giuseppe; Bufalo, Michele (2023-07-14). "Time series forecasting with the CIR# model: from hectic markets sentiments to regular seasonal tourism". Technological and Economic Development of Economy. 29 (4): 1216–1238. doi:10.3846/tede.2023.19294. ISSN 2029-4921.1216-1238&rft.date=2023-07-14&rft_id=info:doi/10.3846/tede.2023.19294&rft.issn=2029-4921&rft.aulast=Orlando&rft.aufirst=Giuseppe&rft.au=Bufalo, Michele&rft_id=https://journals.vilniustech.lt/index.php/TEDE/article/view/19294&rfr_id=info:sid/en.wikipedia.org:Cox–Ingersoll–Ross model" class="Z3988">
  11. ^ Di Francesco, Marco; Kamm, Kevin (4 October 2021). "How to handle negative interest rates in a CIR framework". SeMa Journal. 79 (4): 593–618. arXiv:2106.03716. doi:10.1007/s40324-021-00267-w. S2CID 235358123.593-618&rft.date=2021-10-04&rft_id=info:arxiv/2106.03716&rft_id=https://api.semanticscholar.org/CorpusID:235358123#id-name=S2CID&rft_id=info:doi/10.1007/s40324-021-00267-w&rft.aulast=Di Francesco&rft.aufirst=Marco&rft.au=Kamm, Kevin&rft_id=https://doi.org/10.1007%2Fs40324-021-00267-w&rfr_id=info:sid/en.wikipedia.org:Cox–Ingersoll–Ross model" class="Z3988">
  12. ^ Di Francesco, Marco; Kamm, Kevin (2022). "On the Deterministic-Shift Extended CIR Model in a Negative Interest Rate Framework". International Journal of Financial Studies. 10 (2): 38. doi:10.3390/ijfs10020038. hdl:11585/916048.

Further References

edit
  • Hull, John C. (2003). Options, Futures and Other Derivatives. Upper Saddle River, NJ: Prentice Hall. ISBN 0-13-009056-5.
  • Cox, J.C.; Ingersoll, J.E.; Ross, S.A. (1985). "A Theory of the Term Structure of Interest Rates". Econometrica. 53 (2): 385–407. doi:10.2307/1911242. JSTOR 1911242.385-407&rft.date=1985&rft_id=info:doi/10.2307/1911242&rft_id=https://www.jstor.org/stable/1911242#id-name=JSTOR&rft.aulast=Cox&rft.aufirst=J.C.&rft.au=Ingersoll, J.E.&rft.au=Ross, S.A.&rfr_id=info:sid/en.wikipedia.org:Cox–Ingersoll–Ross model" class="Z3988">
  • Maghsoodi, Y. (1996). "Solution of the extended CIR Term Structure and Bond Option Valuation". Mathematical Finance. 6 (6): 89–109. doi:10.1111/j.1467-9965.1996.tb00113.x.89-109&rft.date=1996&rft_id=info:doi/10.1111/j.1467-9965.1996.tb00113.x&rft.au=Maghsoodi, Y.&rfr_id=info:sid/en.wikipedia.org:Cox–Ingersoll–Ross model" class="Z3988">
  • Damiano Brigo; Fabio Mercurio (2001). Interest Rate Models — Theory and Practice with Smile, Inflation and Credit (2nd ed. 2006 ed.). Springer Verlag. ISBN 978-3-540-22149-4.
  • Brigo, Damiano; Fabio Mercurio (2001b). "A deterministic-shift extension of analytically tractable and time-homogeneous short rate models". Finance & Stochastics. 5 (3): 369–388. doi:10.1007/PL00013541. S2CID 35316609.369-388&rft.date=2001&rft_id=info:doi/10.1007/PL00013541&rft_id=https://api.semanticscholar.org/CorpusID:35316609#id-name=S2CID&rft.au=Brigo, Damiano&rft.au=Fabio Mercurio&rft_id=http://ideas.repec.org/a/spr/finsto/v5y2001i3p369-387.html&rfr_id=info:sid/en.wikipedia.org:Cox–Ingersoll–Ross model" class="Z3988">
  • Open Source library implementing the CIR process in python
  • Orlando, Giuseppe; Mininni, Rosa Maria; Bufalo, Michele (2020). "Forecasting interest rates through Vasicek and CIR models: A partitioning approach". Journal of Forecasting. 39 (4): 569–579. arXiv:1901.02246. doi:10.1002/for.2642. ISSN 1099-131X. S2CID 126507446.569-579&rft.date=2020&rft_id=info:arxiv/1901.02246&rft_id=https://api.semanticscholar.org/CorpusID:126507446#id-name=S2CID&rft.issn=1099-131X&rft_id=info:doi/10.1002/for.2642&rft.aulast=Orlando&rft.aufirst=Giuseppe&rft.au=Mininni, Rosa Maria&rft.au=Bufalo, Michele&rfr_id=info:sid/en.wikipedia.org:Cox–Ingersoll–Ross model" class="Z3988">