Connection (algebraic framework)

Geometry of quantum systems (e.g., noncommutative geometry and supergeometry) is mainly phrased in algebraic terms of modules and algebras. Connections on modules are generalization of a linear connection on a smooth vector bundle written as a Koszul connection on the -module of sections of .[1]

Commutative algebra

edit

Let   be a commutative ring and   an A-module. There are different equivalent definitions of a connection on  .[2]

First definition

edit

If   is a ring homomorphism, a  -linear connection is a  -linear morphism

 

which satisfies the identity

 

A connection extends, for all   to a unique map

 

satisfying  . A connection is said to be integrable if  , or equivalently, if the curvature   vanishes.

Second definition

edit

Let   be the module of derivations of a ring  . A connection on an A-module   is defined as an A-module morphism

 

such that the first order differential operators   on   obey the Leibniz rule

 

Connections on a module over a commutative ring always exist.

The curvature of the connection   is defined as the zero-order differential operator

 

on the module   for all  .

If   is a vector bundle, there is one-to-one correspondence between linear connections   on   and the connections   on the  -module of sections of  . Strictly speaking,   corresponds to the covariant differential of a connection on  .

Graded commutative algebra

edit

The notion of a connection on modules over commutative rings is straightforwardly extended to modules over a graded commutative algebra.[3] This is the case of superconnections in supergeometry of graded manifolds and supervector bundles. Superconnections always exist.

Noncommutative algebra

edit

If   is a noncommutative ring, connections on left and right A-modules are defined similarly to those on modules over commutative rings.[4] However these connections need not exist.

In contrast with connections on left and right modules, there is a problem how to define a connection on an R-S-bimodule over noncommutative rings R and S. There are different definitions of such a connection.[5] Let us mention one of them. A connection on an R-S-bimodule   is defined as a bimodule morphism

 

which obeys the Leibniz rule

 

See also

edit

Notes

edit

References

edit
  • Koszul, Jean-Louis (1950). "Homologie et cohomologie des algèbres de Lie" (PDF). Bulletin de la Société Mathématique de France. 78: 65–127. doi:10.24033/bsmf.1410.65-127&rft.date=1950&rft_id=info:doi/10.24033/bsmf.1410&rft.aulast=Koszul&rft.aufirst=Jean-Louis&rft_id=http://www.numdam.org/item/10.24033/bsmf.1410.pdf&rfr_id=info:sid/en.wikipedia.org:Connection (algebraic framework)" class="Z3988">
  • Koszul, J. L. (1986). Lectures on Fibre Bundles and Differential Geometry (Tata University, Bombay, 1960). doi:10.1007/978-3-662-02503-1 (inactive 1 November 2024). ISBN 978-3-540-12876-2. S2CID 51020097. Zbl 0244.53026.{{cite book}}: CS1 maint: DOI inactive as of November 2024 (link)
  • Bartocci, Claudio; Bruzzo, Ugo; Hernández-Ruipérez, Daniel (1991). The Geometry of Supermanifolds. doi:10.1007/978-94-011-3504-7. ISBN 978-94-010-5550-5.
  • Dubois-Violette, Michel; Michor, Peter W. (1996). "Connections on central bimodules in noncommutative differential geometry". Journal of Geometry and Physics. 20 (2–3): 218–232. arXiv:q-alg/9503020. doi:10.1016/0393-0440(95)00057-7. S2CID 15994413.2–3&rft.pages=218-232&rft.date=1996&rft_id=info:arxiv/q-alg/9503020&rft_id=https://api.semanticscholar.org/CorpusID:15994413#id-name=S2CID&rft_id=info:doi/10.1016/0393-0440(95)50057-7&rft.aulast=Dubois-Violette&rft.aufirst=Michel&rft.au=Michor, Peter W.&rfr_id=info:sid/en.wikipedia.org:Connection (algebraic framework)" class="Z3988">
  • Landi, Giovanni (1997). An Introduction to Noncommutative Spaces and their Geometries. Lecture Notes in Physics. Vol. 51. arXiv:hep-th/9701078. doi:10.1007/3-540-14949-X. ISBN 978-3-540-63509-3. S2CID 14986502.
  • Mangiarotti, L.; Sardanashvily, G. (2000). Connections in Classical and Quantum Field Theory. doi:10.1142/2524. ISBN 978-981-02-2013-6.
edit
  • Sardanashvily, G. (2009). "Lectures on Differential Geometry of Modules and Rings". arXiv:0910.1515 [math-ph].