List of pioneers in computer science

(Redirected from Computer pioneer)

This is a list of people who made transformative breakthroughs in the creation, development and imagining of what computers could do.

Pioneers

edit
Achievement
date
Person Achievement
1977 Adleman, Leonard RSA algorithm and making public-key cryptography useful in practice.
1944 Aiken, Howard Conceived and co-designed the Harvard Mark I.
830~ Al-Khwarizmi The term algorithm is derived from the algorism, the technique of performing arithmetic with Hindu–Arabic numerals popularised by al-Khwarizmi in his book On the Calculation with Hindu Numerals.[1][2][3]
1970, 1989 Allen, Frances E. Developed bit vector notation and program control-flow graphs; first female IBM Fellow (1989); first female recipient of the ACM's Turing Award (2006).
1954, 1964, 1967 Amdahl, Gene Pioneer of mainframe computing; designed IBM 704; chief architect of IBM System/360.[4][5] Formulated Amdahl's law; also worked on IBM 709 and IBM 7030 Stretch.[6]
1939 Atanasoff, John Built the first electronic digital computer, the Atanasoff–Berry Computer, though it was neither programmable nor Turing-complete.
1822, 1837 Babbage, Charles Originated the concept of a programmable general-purpose computer; designed the Analytical Engine and built a prototype for a less powerful mechanical calculator.
1973 Bachman, Charles Outstanding contributions to database technology.[7]
1954, 1963 Backus, John Led the team that created FORTRAN (Formula Translation), the first practical high-level programming language, and formulated the Backus–Naur form that described the formal language syntax.
850~ Banū Mūsā Three brothers who wrote the Book of Ingenious Devices, describing what appears to be the first programmable machine, an automatic flute player.[8]
1960–1964 Baran, Paul One of two independent inventors of the concept of digital packet switching used in modern computer networking including the Internet.[9][10] Published a series of briefings and papers about dividing information into "message blocks" and sending them over distributed networks (1960–1964).[11][12]
1874 Baudot, Émile French telegraphic engineer; patented the Baudot code, the first means of digital communication.[13] The modem speed unit baud is named after him.
1960s Bauer, Friedrich L. Proposed the stack for expression evaluation, with Edsger W. Dijkstra. Influential in establishing computer science as an independent discipline of science; coined the term software engineering. Contributed to numerical analysis, fundamentals of interpretation and translation of programming languages, systematics of program development, program transformation, and cryptology.
1953 Bellman, Richard E. American applied mathematician who introduced dynamic programming (1953)
2018 Bengio, Yoshua; Hinton, Geoffrey; Lecun, Yann Conceptual and engineering breakthroughs that have made deep neural networks a critical component of computing[14]
1989, 1990 Berners-Lee, Tim Invented the World Wide Web and sent the first HTTP communication between client and server.[15]
1995 Blum, Manuel Contributions to the foundations of computational complexity theory and its application to cryptography and program checking[16]
1966 Böhm, Corrado Theorized of the concept of structured programming.
1847, 1854 Boole, George Formalized Boolean algebra, the basis for digital logic and computer science.
1947 Booth, Kathleen Invented the first assembly language.
1969, 1978 Brinch Hansen, Per Developed the RC 4000 multiprogramming system, which introduced the concept of an operating system kernel and the separation of policy and mechanism; effectively the first microkernel architecture.[17] Co-developed the monitor with Tony Hoare, and created the first monitor implementation.[18] Implemented the first form of remote procedure call in the RC 4000,[17] and was first to propose remote procedure calls as a structuring concept for distributed computing.[19]
1959, 1995 Brooks, Fred Manager of IBM System/360 and OS/360 projects; author of The Mythical Man-Month.
1908 Brouwer, Luitzen Egbertus Jan Founded intuitionistic logic, which later came to prevalent use in proof assistants.
1954 Burks, Arthur Proposed Reverse Polish Notation with Don Warren and Jesse Wright in 1954, unaware of Konrad Zuse's earlier use of postfix notation in his Z3 in 1941, and later independently reinvented by Friedrich L. Bauer and Edsger W. Dijkstra for use with stacks.
1930 Bush, Vannevar Analogue computing pioneer; originator of the Memex concept, which led to the development of Hypertext
1951 Caminer, David With John Pinkerton, developed the LEO computer, the first business computer, for J. Lyons and Co
1974 Catmull, Edwin Computer generated imagery (CGI) and 3D graphics pioneer who developed texture mapping, the Catmull-Clark subdivision surface algorithm (with Jim Clark), and the Catmull-Rom spline (with Raphael Rom. Former vice president of Industrial Light & Magic and co-founder of and former president of Pixar
1978 Cerf, Vint With Bob Kahn, designed the Transmission Control Protocol and Internet Protocol (TCP/IP), the primary data communication protocols of the Internet and other computer networks
1956 Chomsky, Noam Made contributions to computer science with his work in linguistics. Developed Chomsky hierarchy, directly impacting programming language theory and other branches of computer science.
1936 Church, Alonzo Made fundamental contributions to theoretical computer science, specifically in the development of computability theory in the form of lambda calculus. Independently of Alan Turing, formulated what is now known as the Church-Turing Thesis and proved that first-order logic is undecidable.
1962 Clark, Wesley A. Designed LINC, the first functional computer scaled down and priced for individual users (1963). Many of its features are considered prototypes of essential elements of personal computers.
1981 Clarke, Edmund M. Developed model checking and formal verification of software and hardware, with E. Allen Emerson.
1987 Cocke, John Significant contributions to compiler design and theory, the architecture of large systems, and the development of reduced instruction set computers (RISC)
1970 Codd, Edgar F. Proposed and formalized the relational model of data management, the theoretical basis of relational databases
1971 Conway, Lynn Superscalar architecture with multiple-issue out-of-order dynamic instruction scheduling
1967 Cook, Stephen Formalized the notion of NP-completeness, inspiring a great deal of research in computational complexity theory
1965 Cooley, James With John W. Tukey, created the fast Fourier transform
1944 Coombs, Allen Designed and built the Mark II Colossus computers; superseded the Mark I version (which was the world's first digital, electronic computing device)
1989 Corbató, Fernando J. Pioneering work organizing the concepts and leading the development of the general-purpose, large-scale, time-sharing and resource-sharing computer systems CTSS and Multics
1964 – 1996 Cray, Seymour Designed a series of computers that were the fastest in the world for decades; and founded Cray Research, which built many of them; credited with creating the supercomputer industry
1978, 1993 Cutler, David N. Major pioneer of operating-system design through his work at Digital Equipment Corporation and Microsoft, where he was lead engineer of the VMS and Windows NT kernels (respectively)
1962 Dahl, Ole-Johan With Kristen Nygaard, invented the proto-object oriented language SIMULA
1965 Davies, Donald One of two independent inventors of the concept of digital packet switching used in modern computer networking including the Internet.[9][20] Conceived of and named the concept for data communication networks (1965–66).[21][22] Many of the wide-area packet-switched networks of the 1970s, including ARPANET, were similar "in nearly all respects" to his original 1965 design.[23]
1976 Diffie, Whitfield Fundamental contributions to modern cryptography. Diffie and Hellman's groundbreaking 1976 paper "New Directions in Cryptography"[24] introduced the ideas of public-key cryptography and digital signatures, the foundation of security protocols used on the Internet today.[25]
1968 Dijkstra, Edsger W. Pioneered the shortest path algorithm; coined the term structured programming; invented the semaphore; famously suggested that the GOTO statement should be considered harmful
1918 Eccles, William and Jordan, Frank Wilfred Patented the Eccles–Jordan trigger circuit,[26] the so-called "bistable flip-flop", a building block of all digital memory cells. Built from vacuum tubes, their concept was essential for the success of the Colossus codebreaking computer.
1943, 1951 Eckert, J. Presper With John Mauchly, designed and built ENIAC, the first modern (all electronic, Turing-complete) computer; and UNIVAC I, the first commercially available computer
1981 Emerson, E. Allen Developed model checking and formal verification of software and hardware, with Edmund M. Clarke
1963 Engelbart, Douglas Best known for inventing the computer mouse, with Bill English; pioneer of human–computer interaction whose Augment team developed hypertext, networked computers, and precursors to GUIs
1971 Faggin, Federico Designed the first commercial microprocessor, Intel 4004
1994 Feigenbaum, Edward Pioneering the design and construction of large-scale artificial intelligence systems, demonstrating the practical importance and potential commercial impact of artificial intelligence technology[27]
1974 Feinler, Elizabeth Led team that defined a simple text file format for Internet host names, which became the Domain Name System; her group became the naming authority for the top-level domains of .mil, .gov, .edu, .org, and .com
1943 Flowers, Tommy Designed and built the Mark I Colossus computer, the world's first programmable, digital, electronic, computing devices
1978 Floyd, Robert W. Had a clear influence on methodologies for the creation of efficient and reliable software; helped to found these important sub-fields of computer science: theory of parsing, semantics of programming languages, automatic program verification, automatic program synthesis, and analysis of algorithms[28]
1994 Floyd, Sally Founded the field of Active Queue Management; co-invented Random Early Detection, used in almost all Internet routers
1879 Frege, Gottlob Extended Aristotelian logic with first-order predicate calculus independently of Charles Sanders Peirce, a crucial precursor in computability theory; also relevant to early work on artificial intelligence, logic programming
1985 Furber, Stephen
Wilson, Sophie
Led the creation of the ARM 32-bit RISC microprocessor[29]
1958, 1961, 1967 Ginsburg, Seymour Proved "don't-care" circuit minimization does not necessarily yield optimal results; proved that the ALGOL programming language was context-free (linking formal language theory to the problem of compiler writing); invented AFL Theory
1931 Gödel, Kurt Proved that Peano arithmetic could not be both logically consistent and complete in first-order predicate calculus. Church, Kleene, and Turing developed the foundations of computation theory based on corollaries to Gödel's work.
1989 Goldwasser, Shafi Invented zero-knowledge proofs with Micali and Rackoff; she and Micali received the Turing Award (2012) for this and other work.
2011 Graham, Susan L.[undue weight?discuss] Awarded the 2009 IEEE John von Neumann Medal for "contributions to programming language design and implementation and for exemplary service to the discipline of computer science"
1953 Gray, Frank Physicist and researcher at Bell Labs, developed the reflected binary code (RBC) or Gray code.[30] Gray's methodologies are used for error detection and correction in digital communication systems, such as QAM in digital subscriber line networks.
1974, 2005 Gray, Jim Innovator in database systems and transaction processing implementation
1986, 1990 Grosz, Barbara[undue weight?discuss] Created the first computational model of discourse, establishing the field of research and influencing language-processing technologies; developed SharedPlans model for collaboration in multi-agent systems
1988, 2015 Gustafson, John Proved the viability of parallel computing experimentally and theoretically; formulated Gustafson's Law; developed high-efficiency formats for representing real numbers Unum and Posit
1971 Hamilton, Margaret Developed the concepts of asynchronous software, priority scheduling, end-to-end testing, and human-in-the-loop decision capability, such as priority displays which then became the foundation for ultra-reliable software design
1950 Hamming, Richard Created the fields of error-correcting code, Hamming code, Hamming matrix, the Hamming window, Hamming numbers, sphere-packing (or Hamming bound), and the Hamming distance;[31][32] established the concept of perfect code[33][34]
1956, 1958, 1974 Händler, Wolfgang Pioneering work on automata theory, parallel computing, artificial intelligence, man-machine interfaces and computer graphics; one of the lead architects of the TR 4 [de] supercomputer; invented Händler diagrams for logic function minimization; devised the Erlangen Classification System [de] (ECS) for parallel computers
2019 Hanrahan, Pat Fundamental contributions to 3D computer graphics, with revolutionary impact on computer-generated imagery (CGI) in filmmaking and other applications
1993 Hartmanis, Juris Foundations for the field of computational complexity theory[35]
1981, 1995, 1999 Hejlsberg, Anders Author of Turbo Pascal at Borland; chief architect of Delphi; designer and lead architect of C# at Microsoft
1976 Hellman, Martin Fundamental contributions to modern cryptography. Diffie and Hellman's groundbreaking 1976 paper, "New Directions in Cryptography",[24] introduced the ideas of public-key cryptography and digital signatures, the foundation for security protocols on the Internet today[25]
2017 Hennessy, John L. Pioneered a systematic, quantitative approach to the design and evaluation of computer architectures with enduring impact on the microprocessor industry
2008, 2012, 2018 Hinton, Geoffrey Popularized and enabled the use of artificial neural networks and deep learning, among the most successful tools in modern artificial intelligence efforts; received the Turing Award (2018) for conceptual and engineering breakthroughs that have made deep neural networks a critical component of computing[14]
1961, 1969, 1978, 1980 Hoare, C. A. R. Developed the formal language Communicating Sequential Processes (CSP), Hoare logic for verifying program correctness, and Quicksort; fundamental contributions to the definition and design of programming languages
1968 Holberton, Betty Wrote the first mainframe sort merge on the Univac
1889 Hollerith, Herman Widely regarded as the father of modern machine data processing, his invention of the punched card tabulating machine marked the beginning of the era of semiautomatic data processing systems
1986 Hopcroft, John Fundamental achievements in the design and analysis of algorithms and data structures
1952 Hopper, Grace Pioneered work on the necessity for high-level programming languages, which she termed automatic programming; wrote the A-O compiler, which heavily influenced the COBOL language
1997 Hsu Feng-hsiung Work leading to the creation of the Deep Thought chess computer; architect and principal designer IBM Deep Blue chess computer that defeated the reigning World Chess Champion, Garry Kasparov, in 1997
1952 Huffman, David Created Huffman coding
1952 Hurd, Cuthbert Helped IBM develop its first general-purpose computer, the IBM 701
1945, 1953 Huskey, Harry Contributions to the design of early computers including ENIAC, EDVAC, Pilot ACE, EDVAC, SEAC, SWAC, and Bendix G-15 (the latter described as the first personal computer, being operable by one person)
1954, 1962 Iverson, Kenneth Helped establish and taught the first graduate course in computer science (at Harvard); invented the APL programming language; contributions to interactive computing
1801 Jacquard, Joseph Marie Built and demonstrated the Jacquard loom, a programmable mechanized loom controlled by a tape constructed from punched cards
1206 Al-Jazari Invented programmable machines, including programmable humanoid robots,[36] and the castle clock, an astronomical clock considered the first programmable analog computer[37]
1989 Kahan, William Fundamental contributions to numerical analysis; foremost expert on floating-point computations; dedicated to "making the world safe for numerical computations"
1978 Kahn, Bob Designed the Transmission Control Protocol and Internet Protocol (TCP/IP), the primary data communication protocols of the Internet and other computer networks
1952, 1953 Karnaugh, Maurice Creator of the Karnaugh map, a variation on Edward Veitch's Veitch chart; rediscovery of Allan Marquand's much earlier logical diagram used for logic function minimization
1985 Karp, Richard M. Contributions to algorithm theory, including the development of efficient algorithms for network flow and other combinatorial optimization problems; identified polynomial-time computability with the intuitive notion of algorithmic efficiency; contributed to the theory of NP-completeness
1973 Karpinski, Jacek Developed the first differential analyzer using transistors; developed one of the first machine-learning algorithms for character and image recognition; invented of one of the first minicomputers, the K-202
1970~ Kay, Alan Pioneered many ideas at the root of object-oriented programming languages; led the team that developed Smalltalk; made fundamental contributions to personal computing
1948-1990s Kilburn, Tom With Freddie Williams he worked on the Williams–Kilburn tube and developed the world's first electronic stored-program computer, the Manchester Baby, while working at the University of Manchester. His work propelled Manchester and Britain into the forefront of the emerging field of computer science. He also worked on the development of Atlas, one of the most powerful supercomputer in 1960s.
1972–1994 Kildall, Gary Introduced the theory of data-flow analysis in optimizing compilers (global expression optimization, Kildall's method). Worked on instruction set emulators (INTERP), found an innovative software relocation method (page boundary relocation), and laid the foundation to the concepts of binary recompilation (XLT86). Developed the first high-level programming language and compiler for microcomputers (PL/M) and the first mainstream operating system for microcomputers (CP/M). Invented the concept of a hardware abstraction layer called the BIOS, with both conceptually laying the foundation to all DOS-based operating systems on personal computers. Worked on diskette track buffering schemes, read-ahead algorithms, virtual disk drives, and file system caching. Developed the first computer interface for video disks and pioneered CD-ROM file systems, introducing the first encyclopedia for computers (The Electronic Encyclopedia). Pioneered a modular PBX communication system integrating land-lines with mobile phones (Intelliphone) and to remotely connect with home appliances.
1957 Kirsch, Russell Gray Whilst working for the National Bureau of Standards (NBS), Kirsch used a recently developed image scanner to scan and store the first digital photograph.[38] His scanned photo of his three-month-old son was deemed by Life magazine as one of the "100 Photographs That Changed The World".
1961–1970s Kleinrock, Leonard Pioneered the application of queueing theory to model delays in message switching networks in his Ph.D. thesis in 1961–1962, published as a book in 1964.[39] He later published several of the standard works on the subject. In the early 1970s, he applied queueing theory to model the performance of packet switching networks. This work played an influential role in the development of the ARPANET, the precursor to the Internet. He supervised the graduate students who worked on the early communication protocols for the ARPANET. His theoretical work on hierarchical routing in the late 1970s with student Farouk Kamoun remains critical to the operation of the Internet today.
1936 Kleene, Stephen Cole Pioneered work with Alonzo Church on the Lambda Calculus that first laid down the foundations of computation theory.
1968, 1989 Knuth, Donald Wrote The Art of Computer Programming and created TeX. Coined the term "analysis of algorithms" and made major contributions to that field, including popularizing Big O notation.
1990–1993 Lam, Simon S. Lam was inducted into the Internet Hall of Fame (2023) by the Internet Society for “inventing secure sockets in 1991 and implementing the first secure sockets layer, named SNP, in 1993.”[40] In 1990, he conceived the idea of a new security sublayer in the Internet protocol stack. This way, application programmers do not need to know much about implementation details for security. Also, the upper interface of the sublayer would enable implementation changes in the future. Lam's idea of a sublayer which offers a “secure sockets interface” to applications was novel and a radical departure from contemporary security research for Internet applications (e.g., MIT's Kerberos, 1988–1992). SNP was created for Internet applications in general. Subsequent secure sockets layers, SSL and TLS, developed years later for commercial browsers, followed the same architecture and key ideas of SNP. Today, TLS 1.3 is used not only for all e-commerce applications (banking, shopping, etc.) on WWW, but also for email, and many other Internet applications.
1950–1960 Lamarr, Hedy At the beginning of World War II, she and composer George Antheil developed a radio guidance system for Allied torpedoes that used spread spectrum and frequency hopping technology to defeat the threat of jamming by the Axis powers. Although the US Navy did not adopt the technology until the 1960s, the principles of their work are incorporated into Bluetooth and GPS technology and are similar to methods used in legacy versions of CDMA and Wi-Fi. This work led to their induction into the National Inventors Hall of Fame in 2014.
1974, 1978 Lamport, Leslie Formulated algorithms to solve many fundamental problems in distributed systems (e.g. the bakery algorithm).
Developed the concept of a logical clock, enabling synchronization between distributed entities based on the events through which they communicate. Created LaTeX.
1972 Lampson, Butler W. Development of distributed, personal computing environments and the technology for their implementation: workstations, networks, operating systems, programming systems, displays, security and document publishing.
1964–1966 Landin, Peter Used the lambda calculus to formally specify the semantics of programming languages, and developed an early functional programming language named ISWIM.
1951 Lebedev, Sergei Alekseyevich Independently designed the first electronic computer in the Soviet Union, MESM, in Kiev, Ukraine.
1670~ Leibniz, Gottfried Made advances in symbolic logic, such as the Calculus ratiocinator, that were heavily influential on Gottlob Frege. He anticipated later developments in first-order predicate calculus, which were crucial for the theoretical foundations of computer science.
1960 Licklider, J. C. R. Began the investigation of human–computer interaction, leading to many advances in computer interfaces as well as in cybernetics and artificial intelligence.
1987 Liskov, Barbara Developed the Liskov substitution principle, which guarantees semantic interoperability of data types in a hierarchy.
1300~ Llull, Ramon Designed multiple symbolic representations machines, and pioneered notions of symbolic representation and manipulation to produce knowledge—both of which were major influences on Leibniz.
1852 Lovelace, Ada An English mathematician and writer, chiefly known for her work on Charles Babbage's proposed mechanical general-purpose computer, the Analytical Engine. She was the first to recognize that the machine had applications beyond pure calculation, and created the first algorithm intended to be carried out by such a machine. As a result, she is often regarded as the first to recognize the full potential of a "computing machine" and the first computer programmer.
1909 Ludgate, Percy Charles Babbage in 1843 and Percy Ludgate in 1909 designed the first two Analytical Engines in history. Ludgate's engine used multiplication as its basis (using his own discrete Irish logarithms), had the first multiplier-accumulator (MAC), was first to exploit a MAC to perform division, stored numbers as displacements of rods in shuttles, and had several other novel features, including for program control.
1971 Martin-Löf, Per Published an early draft on the type theory that many proof assistants build on.
1943, 1951 Mauchly, John With J. Presper Eckert, designed and built the ENIAC, the first modern (all electronic, Turing-complete) computer, and the UNIVAC I, the first commercially available computer. Also worked on BINAC (1949), EDVAC (1949), UNIVAC (1951) with Grace Hopper and Jean Bartik, to develop early stored program computers.
1958 McCarthy, John Invented LISP, a functional programming language.
1956, 2012 McCluskey, Edward J. Fundamental contributions that shaped the design and testing of digital systems, including the first algorithm for digital logic synthesis, the Quine-McCluskey logic minimization method.
1986 Meyer, Bertrand Developed design by contract in the guise of the Eiffel programming language.
2012 Micali, Silvio For transformative work that laid the complexity-theoretic foundations for the science of cryptography and in the process pioneered new methods for efficient verification of mathematical proofs in complexity theory.
1991 Milner, Robin 1) LCF, the mechanization of Scott's Logic of Computable Functions, probably the first theoretically based yet practical tool for machine assisted proof construction; 2) ML, the first language to include polymorphic type inference together with a type-safe exception-handling mechanism; 3) CCS, a general theory of concurrency. In addition, he formulated and strongly advanced full abstraction, the study of the relationship between operational and denotational semantics.[41]
1963 Minsky, Marvin Co-founder of Artificial Intelligence Lab at Massachusetts Institute of Technology, author of several texts on AI and philosophy. Critic of the perceptron.
1968 Moore, Charles H. Inventor of the Forth programming language.
2008 Nakamoto, Satoshi The anonymous creator or creators of Bitcoin, the first peer-to-peer digital currency. Nakamoto's 2008 white-paper introduced the concept of the blockchain, a database structure that allows full trust in the decentralized and distributed public transaction ledger of the cryptocurrency.[42]
1934, 1938 Nakashima Akira NEC engineer introduced switching circuit theory in papers from 1934 to 1936, laying the foundations for digital circuit design, in digital computers and other areas of modern technology.
1960 Naur, Peter Edited the ALGOL 60 Revised Report, introducing Backus-Naur form
1945 Neumann, John von Formulated the von Neumann architecture upon which most modern computers are based.
1956 Newell, Allen Together with J. C. Shaw[43] and Herbert Simon, the three co-wrote the Logic Theorist, the first true AI program, in the first list-processing language, which influenced LISP.
1943 Newman, Max Instigated the production of the Colossus computers at Bletchley Park. After the second world war he established the Computing Machine Laboratory at the University of Manchester where he created the project that built the world's first stored-program computer, the Manchester Baby.
1962 Nygaard, Kristen With Ole-Johan Dahl, invented the proto-object oriented language SIMULA.
1642 Pascal, Blaise Invented the mechanical calculator.
5th century BCE Pāṇini Invented first formal Grammar. Also gave early forms of Backus-Naur form[44]
2017 Patterson, David For pioneering a systematic, quantitative approach to the design and evaluation of computer architectures with enduring impact on the microprocessor industry.
2011 Pearl, Judea Fundamental contributions to artificial intelligence through the development of a calculus for probabilistic and causal reasoning.[45]
1952 Perlis, Alan On Project Whirlwind, member of the team that developed the ALGOL programming language, and the first recipient of the Turing Award
1985 Perlman, Radia Invented the Spanning Tree Protocol (STP), which is fundamental to the operation of network bridges, while working for Digital Equipment Corporation. Has done extensive and innovative research, particularly on encryption and networking. She received the USENIX Lifetime Achievement Award in 2007, among numerous others.
1964 Perotto, Pier Giorgio[undue weight?discuss] Computer designer for Olivetti, designed one of the first electronic programmable calculators, the Programma 101[46][47][48]
1932 Péter, Rózsa Published a series of papers grounding recursion theory as a separate area of mathematical research, setting the foundation for theoretical computer science.
1995 Picard, Rosalind [undue weight?discuss] Founded Affective Computing, and laid the foundations for giving computers skills of emotional intelligence.
1996 Pnueli, Amir Introducing temporal logic into computing science and for outstanding contributions to program and systems verification.[49]
1936 Post, Emil L. Developed the Post machine as a model of computation, independently of Turing. Known also for developing truth tables, the Post correspondence problem used in recursion theory as well as proving what is known as Post's theorem.
1976 Rabin, Michael O. The joint paper "Finite Automata and Their Decision Problems",[50] which introduced the idea of nondeterministic machines, which has proved to be an enormously valuable concept. Their (Scott & Rabin) classic paper has been a continuous source of inspiration for subsequent work in this field.[51][52]
1994 Reddy, Raj Pioneering the design and construction of large scale artificial intelligence systems, demonstrating the practical importance and potential commercial impact of artificial intelligence technology.[27]
1967–2011 Ritchie, Dennis With Ken Thompson, pioneered the C programming language and the Unix computer operating system at Bell Labs.
1977 Rivest, Ron Ingenious contribution and making public-key cryptography useful in practice.
1958–1960 Rosen, Saul Designed the software of the first transistor-based computer. Also influenced the ALGOL programming language.
1975, 1985 Rubin, Philip Developed pioneering computational speech synthesis systems for use in the experimental study of speech perception and production, including articulatory synthesis and sinewave synthesis. Also designed the HADES signal processing system, a predecessor of MATLAB.
1910 Russell, Bertrand Made contributions to computer science with his work on mathematical logic (example: truth function). Introduced the notion of type theory. He also introduced type system (along with Alfred North Whitehead) in his work, Principia Mathematica.
1975 Salton, Gerard[undue weight?discuss] A pioneer of automatic information retrieval, who proposed the vector space model and the inverted index.
1962 Sammet, Jean E. Developed the FORMAC programming language. She was also the first to write extensively about the history and categorization of programming languages in 1969, and became the first female president of the Association for Computing Machinery in 1974.
1880, 1898 Sanders Peirce, Charles Proved the functional completeness of the NOR gate. Proposed the implementation of logic via electrical circuits, decades before Claude Shannon. Extended Aristotelian logic with first-order predicate calculus, independently of Gottlob Frege, a crucial precursor in computability theory. Also relevant to early work on artificial intelligence, logic programming.
1976 Scott, Dana The joint paper "Finite Automata and Their Decision Problems",[50] which introduced the idea of nondeterministic machines, which has proved to be an enormously valuable concept. Their (Scott & Rabin) classic paper has been a continuous source of inspiration for subsequent work in this field.[51][52]
1977 Shamir, Adi Ingenious contribution and making public-key cryptography useful in practice.
1937, 1948 Shannon, Claude Founded information theory, and laid foundations for practical digital circuit design.
1971 Shima Masatoshi Designed the Intel 4004, the first commercial microprocessor,[53][54] as well as the Intel 8080, Zilog Z80 and Zilog Z8000 microprocessors, and the Intel 8259, 8255, 8253, 8257 and 8251 chips.[55]
2007 Sifakis, Joseph Developing model checking into a highly effective verification technology, widely adopted in the hardware and software industries.[56]
1956, 1957 Simon, Herbert A. A political scientist and economist who pioneered artificial intelligence. Co-creator of the Logic Theory Machine and the General Problem Solver programs.
1953 Spärck Jones, Karen [undue weight?discuss] One of the pioneers of information retrieval and natural language processing.
1972 Stallman, Richard Stallman launched the GNU Project in September 1983 to create a Unix-like computer operating system composed entirely of free software. With this, he also launched the free software movement.
1993 Stearns, Richard E. Foundations for the field of computational complexity theory.[35]
1981 Stepanov, Alexander Stepanov is one of the pioneers when it comes to Generic Programming and he is also the primary designer and implementer of the C Standard Template Library.
1937, 1941 Stibitz, George R. Father of modern digital computing and remote job entry. Coined the term "digital". Discovered the reflected binary code known as Gray code. Excess-3 code is named after him as well (Stibitz code).
1982 Stonebraker, Michael Revolutionized the field of database management systems (DBMSs) and founded multiple successful database companies
1979 Stroustrup, Bjarne Invented C at Bell Labs
1963 Sutherland, Ivan Author of Sketchpad, the ancestor of modern computer-aided drafting (CAD) programs and one of the early examples of object-oriented programming.
1986 Tarjan, Robert Fundamental achievements in the design and analysis of algorithms and data structures.
1973 Thacker, Charles P. Pioneering design and realization of the Xerox Alto, the first modern personal computer, and in addition for his contributions to the Ethernet and the Tablet PC.
1972, 1973 Thi, André Truong Trong and François Gernelle[undue weight?discuss] Invention of the Micral N, the earliest commercial, non-kit personal computer based on a microprocessor.
1967 Thompson, Ken Created the Unix operating system, the B programming language, Plan 9 operating system, the first machine to achieve a Master rating in chess, and the UTF-8 encoding at Bell Labs and the Go programming language at Google.
1993 Toh, Chai Keong Created mobile ad hoc networking; Implemented the first working wireless ad hoc network of laptop computers in 1998 using Linux OS, Lucent WaveLan 802.11 radios, and a new distributed routing protocol transparent to TCP/UDP/IP.
1912, 1914 Torres Quevedo, Leonardo In 1912, Leonardo Torres Quevedo built El Ajedrecista (the chess player), one of the first autonomous machines capable of playing chess. As opposed to the human-operated The Turk and Ajeeb, El Ajedrecista was a true automaton built to play chess without human guidance. It played an endgame with three chess pieces, automatically moving a white king and a rook to checkmate the black king moved by a human opponent. In his work Essays on Automatics, published in 1914, Torres Quevedo formulates what will be a new branch of engineering: automation and designed an electromechanical version of Babbage's Analytical engine which introduced floating-point arithmetic.
1991 Torvalds, Linus Created the first version of the Linux kernel.
1965 Tukey, John W. With James Cooley, created the fast Fourier transform. He invented the term "bit".[57]
1936 Turing, Alan Made several fundamental contributions to theoretical computer science, including the Turing machine computational model, the conceiving of the stored program concept and the designing of the high-speed ACE design. Independently of Alonzo Church, he formulated the Church-Turing thesis and proved that first-order logic is undecidable. He also explored the philosophical issues concerning artificial intelligence, proposing what is now known as Turing test.
2010 Valiant, Leslie Transformative contributions to the theory of computation, including the theory of probably approximately correct (PAC) learning, the complexity of enumeration and of algebraic computation, and the theory of parallel and distributed computing.
1875, 1875 Verea, Ramón Designed and patented the Verea Direct Multiplier, the first mechanical direct multiplier.
1950~ Wang An Made key contributions to the development of magnetic core memory.
1955, 1960s, 1974 Ware, Willis Co-designer of JOHNNIAC. Chaired committee that developed the Code of Fair Information Practice and led to the Privacy Act of 1974. Vice-chair of the Privacy Protection Study Commission.
1964, 1966 Weizenbaum, Joseph One of the fathers of modern artificial intelligence. Creator of the ELIZA program using natural language processing to emulate conversations with a psychologist.
1968 Wijngaarden, Adriaan van Developer of the W-grammar first used in the definition of ALGOL 68
1949 Wilkes, Maurice Built the first practical stored program computer (EDSAC) to be completed and for being credited with the ideas of several high-level programming language constructs.
1970 Wilkinson, James H. Research in numerical analysis to facilitate the use of the high-speed digital computer, having received special recognition for his work in computations in linear algebra and "backward" error analysis.[58]
1970, 1978 Wirth, Niklaus Designed the Pascal, Modula-2 and Oberon programming languages.
2000 Yao, Andrew Fundamental contributions to the theory of computation, including the complexity-based theory of pseudorandom number generation, cryptography, and communication complexity.
1955–1958 Zemanek, Heinz Developed an early fully transistorized computer, the Mailüfterl. Crucial in the creation of the formal definition of the programming language PL/I.
1938, 1945 Zuse, Konrad Built the first digital freely programmable computer, the Z1. Built the first functional program-controlled computer, the Z3 in 1941.[59] The Z3 already used what later became known as Reverse Polish Notation, and it was proven to be Turing-complete in 1998. Produced the world's first commercial computer, the Z4. Designed the first high-level programming language, Plankalkül.

~ Items marked with a tilde are circa dates.

See also

edit

References

edit
  1. ^ Mario Tokoro, ed. (2010). "9". e: From Understanding Principles to Solving Problems. IOS Press. pp. 223–224. ISBN 978-1-60750-468-9.223-224&rft.pub=IOS Press&rft.date=2010&rft.isbn=978-1-60750-468-9&rfr_id=info:sid/en.wikipedia.org:List of pioneers in computer science" class="Z3988">
  2. ^ Cristopher Moore; Stephan Mertens (2011). The Nature of Computation. Oxford University Press. p. 36. ISBN 978-0-19-162080-5.
  3. ^ A. P. Ershov, Donald Ervin Knuth, ed. (1981). Algorithms in modern mathematics and computer science: proceedings, Urgench, Uzbek SSR, 16–22 September 1979. Springer. ISBN 978-3-540-11157-3.
  4. ^ "UW Alum Dr. Gene Amdahl, Pioneer of Mainframe Computing, Dies at 92". Department of Physics. 2015-11-12. Retrieved 2024-09-20.
  5. ^ "The IBM System/360 | IBM". www.ibm.com. Retrieved 2024-09-20.
  6. ^ "GENE M. AMDAHL 1922–2015". NAE Website. National Academy of Engineering. Retrieved 2024-09-20.
  7. ^ Bachman, C. W. (1973). "The programmer as navigator". Communications of the ACM. 16 (11): 653–658. doi:10.1145/355611.362534.653-658&rft.date=1973&rft_id=info:doi/10.1145/355611.362534&rft.aulast=Bachman&rft.aufirst=C. W.&rft_id=https://doi.org/10.1145%2F355611.362534&rfr_id=info:sid/en.wikipedia.org:List of pioneers in computer science" class="Z3988">
  8. ^ Koetsier, Teun (2001). "On the prehistory of programmable machines: musical automata, looms, calculators". Mechanism and Machine Theory. 36 (5): 589–603. doi:10.1016/S0094-114X(01)00005-2.589-603&rft.date=2001&rft_id=info:doi/10.1016/S0094-114X(01)50005-2&rft.aulast=Koetsier&rft.aufirst=Teun&rfr_id=info:sid/en.wikipedia.org:List of pioneers in computer science" class="Z3988">
  9. ^ a b "The real story of how the Internet became so vulnerable". Washington Post. 2015-05-30. Archived from the original on 2015-05-30. Retrieved 2020-02-18. Historians credit seminal insights to Welsh scientist Donald W. Davies and American engineer Paul Baran
  10. ^ "Inductee Details - Paul Baran". National Inventors Hall of Fame. Archived from the original on 2017-09-06. Retrieved 2017-09-06.
  11. ^ Baran, Paul (2002). "The beginnings of packet switching: some underlying concepts" (PDF). IEEE Communications Magazine. 40 (7): 42–48. doi:10.1109/MCOM.2002.1018006. ISSN 0163-6804. Essentially all the work was defined by 1961, and fleshed out and put into formal written form in 1962. The idea of hot potato routing dates from late 1960.42-48&rft.date=2002&rft_id=info:doi/10.1109/MCOM.2002.1018006&rft.issn=0163-6804&rft.aulast=Baran&rft.aufirst=Paul&rft_id=http://web.cs.ucla.edu/~lixia/papers/Baran2002.pdf&rfr_id=info:sid/en.wikipedia.org:List of pioneers in computer science" class="Z3988">
  12. ^ Monica, 1776 Main Street Santa; California 90401-3208. "Paul Baran and the Origins of the Internet". www.rand.org. Retrieved 2020-02-15.{{cite web}}: CS1 maint: numeric names: authors list (link)
  13. ^ "Jean-Maurice- Emile Baudot. Système de télégraphie rapide, June 1874. Brevet 103,898; Source: Archives Institut National de la Propriété Industrielle (INPI)". Archived from the original on 2017-12-16. Retrieved 2019-07-21.
  14. ^ a b Fathers of the Deep Learning Revolution Receive ACM A.M. Turing Award
  15. ^ McPherson, Stephanie Sammartino (2009-09-01). Tim Berners-Lee: Inventor of the World Wide Web. Twenty-First Century Books. ISBN 978-0-8225-7273-2.
  16. ^ "A.M. Turing Award Laureate – Manuel Blum". amturing.acm.org. Retrieved 2018-11-04.
  17. ^ a b "Per Brinch Hansen • IEEE Computer Society". Computer.org. Retrieved 2015-12-15.
  18. ^ Brinch Hansen, Per (April 1993). "Monitors and Concurrent Pascal: a personal history" (PDF). 2nd ACM Conference on the History of Programming Languages.
  19. ^ Brinch Hansen, Per (November 1978). "Distributed processes: a concurrent programming concept" (PDF). Communications of the ACM. 21 (11): 934–941. CiteSeerX 10.1.1.107.3108. doi:10.1145/359642.359651. S2CID 11610744.934-941&rft.date=1978-11&rft_id=https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.107.3108#id-name=CiteSeerX&rft_id=https://api.semanticscholar.org/CorpusID:11610744#id-name=S2CID&rft_id=info:doi/10.1145/359642.359651&rft.aulast=Brinch Hansen&rft.aufirst=Per&rft_id=http://brinch-hansen.net/papers/1978a.pdf&rfr_id=info:sid/en.wikipedia.org:List of pioneers in computer science" class="Z3988">
  20. ^ "Inductee Details - Donald Watts Davies". National Inventors Hall of Fame. Archived from the original on 2017-09-06. Retrieved 2017-09-06.
  21. ^ Roberts, Dr. Lawrence G. (November 1978). "The Evolution of Packet Switching". Archived from the original on 2016-03-24. Retrieved 2017-09-05. Almost immediately after the 1965 meeting, Donald Davies conceived of the details of a store-and-forward packet switching system; Roberts, Dr. Lawrence G. (May 1995). "The ARPANET & Computer Networks". Archived from the original on 2016-03-24. Retrieved 2016-04-13. Then in June 1966, Davies wrote a second internal paper, "Proposal for a Digital Communication Network" In which he coined the word packet,- a small sub part of the message the user wants to send, and also introduced the concept of an "Interface computer" to sit between the user equipment and the packet network.
  22. ^ Donald Davies (2001), "A Historical Study of the Beginnings of Packet Switching", Computer Journal, British Computer Society[dead link]
  23. ^ Roberts, Dr. Lawrence G. (November 1978). "The Evolution of Packet Switching" (PDF). IEEE Invited Paper. Archived from the original (PDF) on 2018-12-31. Retrieved 2017-09-17. In nearly all respects, Davies' original proposal, developed in late 1965, was similar to the actual networks being built today.
  24. ^ a b Diffie, W.; Hellman, M. (1976). "New directions in cryptography" (PDF). IEEE Transactions on Information Theory. 22 (6): 644–654. CiteSeerX 10.1.1.37.9720. doi:10.1109/TIT.1976.1055638.644-654&rft.date=1976&rft_id=https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.9720#id-name=CiteSeerX&rft_id=info:doi/10.1109/TIT.1976.1055638&rft.aulast=Diffie&rft.aufirst=W.&rft.au=Hellman, M.&rft_id=https://www-ee.stanford.edu/~hellman/publications/24.pdf&rfr_id=info:sid/en.wikipedia.org:List of pioneers in computer science" class="Z3988">
  25. ^ a b "Cryptography Pioneers Receive 2015 ACM A.M. Turing Award". ACM.
  26. ^ William Henry Eccles and Frank Wilfred Jordan, "Improvements in ionic relays" British patent number: GB 148582 (filed: 1918-06-21; published: 1920-08-05). Available on-line at: http://v3.espacenet.com/origdoc?DB=EPODOC&IDX=GB148582&F=0&QPN=GB148582 .
  27. ^ a b Reddy, R. (1996). "To dream the possible dream". Communications of the ACM. 39 (5): 105–112. doi:10.1145/229459.233436.105-112&rft.date=1996&rft_id=info:doi/10.1145/229459.233436&rft.aulast=Reddy&rft.aufirst=R.&rft_id=https://doi.org/10.1145%2F229459.233436&rfr_id=info:sid/en.wikipedia.org:List of pioneers in computer science" class="Z3988">
  28. ^ Floyd, R. W. (1979). "The paradigms of programming". Communications of the ACM. 22 (8): 455–460. doi:10.1145/359138.359140.455-460&rft.date=1979&rft_id=info:doi/10.1145/359138.359140&rft.aulast=Floyd&rft.aufirst=R. W.&rft_id=https://doi.org/10.1145%2F359138.359140&rfr_id=info:sid/en.wikipedia.org:List of pioneers in computer science" class="Z3988">
  29. ^ "Computer History Museum | Fellow Awards – Steve Furber". Archived from the original on 2013-04-02.
  30. ^ Gray, Frank (1953-03-17). "Pulse code communication" (PDF). U.S. patent no. 2,632,058
  31. ^ Morgan 1998, pp. 973–975.
  32. ^ Hamming 1950, pp. 147–160.
  33. ^ Ling & Xing 2004, pp. 82–88.
  34. ^ Pless 1982, pp. 21–24.
  35. ^ a b Stearns, R. E. (1994). "Turing Award lecture: It's time to reconsider time". Communications of the ACM. 37 (11): 95–99. doi:10.1145/188280.188379.95-99&rft.date=1994&rft_id=info:doi/10.1145/188280.188379&rft.aulast=Stearns&rft.aufirst=R. E.&rft_id=https://doi.org/10.1145%2F188280.188379&rfr_id=info:sid/en.wikipedia.org:List of pioneers in computer science" class="Z3988">
  36. ^ "articles58". Shef.ac.uk. 2007-06-29. Archived from the original on 2007-06-29. Retrieved 2017-10-25.
  37. ^ "Ancient Discoveries, Episode 11: Ancient Robots". History Channel. Retrieved 2008-09-06.[dead YouTube link]
  38. ^ Kirsch, Russell A., "Earliest Image Processing", NISTS Museum; SEAC and the Start of Image Processing at the National Bureau of Standards, National Institute of Standards and Technology, archived from the original on 2014-07-19
  39. ^ Kleinrock, Leonard (1961), "Information flow in large communication nets", RLE Quarterly Progress Report (1)
  40. ^ Simon S. Lam, 2023 Internet Hall of Fame inductee
  41. ^ Milner, R. (1993). "Elements of interaction: Turing award lecture". Communications of the ACM. 36: 78–89. doi:10.1145/151233.151240.78-89&rft.date=1993&rft_id=info:doi/10.1145/151233.151240&rft.aulast=Milner&rft.aufirst=R.&rft_id=https://doi.org/10.1145%2F151233.151240&rfr_id=info:sid/en.wikipedia.org:List of pioneers in computer science" class="Z3988">
  42. ^ Nakamoto, Satoshi (2009-05-24). ""Bitcoin: A Peer-to-Peer Electronic Cash System" (PDF)" (PDF). bitcoin.org.
  43. ^ Fred Joseph Gruenberger, The History of the JOHNNIAC, RAND Memorandum 5654
  44. ^ Kak, Subhash C. (January 1987). "The Paninian approach to natural language processing". International Journal of Approximate Reasoning. 1 (1): 117–130. doi:10.1016/0888-613X(87)95007-7.117-130&rft.date=1987-01&rft_id=info:doi/10.1016/0888-613X(87)95007-7&rft.aulast=Kak&rft.aufirst=Subhash C.&rft_id=https://doi.org/10.1016%2F0888-613X%2887%2995007-7&rfr_id=info:sid/en.wikipedia.org:List of pioneers in computer science" class="Z3988">
  45. ^ "Judea Pearl". ACM.
  46. ^ "Olivetti Programma 101 Electronic Calculator". The Old Calculator Web Museum. technically, the machine was a programmable calculator, not a computer.
  47. ^ "2008/107/1 Computer, Programma 101, and documents (3), plastic / metal / paper / electronic components, hardware architect Pier Giorgio Perotto, designed by Mario Bellini, made by Olivetti, Italy, 1965–1971". www.powerhousemuseum.com. Retrieved 2016-03-20.
  48. ^ "Olivetti Programma 101 Electronic Calculator". The Old Calculator Web Museum. It appears that the Mathatronics Mathatron calculator preceeded [sic] the Programma 101 to market.
  49. ^ "A.M. Turing Award Laureate – Amir Pnueli". amturing.acm.org. Retrieved 2018-11-04.
  50. ^ a b Rabin, M. O.; Scott, D. (1959). "Finite Automata and Their Decision Problems". IBM Journal of Research and Development. 3 (2): 114. doi:10.1147/rd.32.0114. S2CID 3160330.
  51. ^ a b Rabin, M. O. (1977). "Complexity of computations". Communications of the ACM. 20 (9): 625–633. doi:10.1145/359810.359816.625-633&rft.date=1977&rft_id=info:doi/10.1145/359810.359816&rft.aulast=Rabin&rft.aufirst=M. O.&rft_id=https://doi.org/10.1145%2F359810.359816&rfr_id=info:sid/en.wikipedia.org:List of pioneers in computer science" class="Z3988">
  52. ^ a b Scott, D. S. (1977). "Logic and programming languages". Communications of the ACM. 20 (9): 634–641. doi:10.1145/359810.359826.634-641&rft.date=1977&rft_id=info:doi/10.1145/359810.359826&rft.aulast=Scott&rft.aufirst=D. S.&rft_id=https://doi.org/10.1145%2F359810.359826&rfr_id=info:sid/en.wikipedia.org:List of pioneers in computer science" class="Z3988">
  53. ^ Nigel Tout. "The Busicom 141-PF calculator and the Intel 4004 microprocessor". Retrieved 2009-11-15.
  54. ^ Federico Faggin, The Making of the First Microprocessor, IEEE Solid-State Circuits Magazine, Winter 2009, IEEE Xplore
  55. ^ Japan, Information Processing Society of. "Shima Masatoshi-Computer Museum". museum.ipsj.or.jp. Retrieved 2017-10-25.
  56. ^ 2007 Turing Award Winners Announced
  57. ^ Claude Shannon (1948). "Bell System Technical Journal". Bell System Technical Journal.
  58. ^ Wilkinson, J. H. (1971). "Some Comments from a Numerical Analyst". Journal of the ACM. 18 (2): 137–147. doi:10.1145/321637.321638. S2CID 37748083.137-147&rft.date=1971&rft_id=info:doi/10.1145/321637.321638&rft_id=https://api.semanticscholar.org/CorpusID:37748083#id-name=S2CID&rft.aulast=Wilkinson&rft.aufirst=J. H.&rft_id=https://doi.org/10.1145%2F321637.321638&rfr_id=info:sid/en.wikipedia.org:List of pioneers in computer science" class="Z3988">
  59. ^ Copeland, B. Jack (2017-10-25). Zalta, Edward N. (ed.). The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. Retrieved 2017-10-25 – via Stanford Encyclopedia of Philosophy.

Sources

edit
edit