In mathematics, a Cauchy matrix, named after Augustin-Louis Cauchy, is an m×n matrix with elements aij in the form

where and are elements of a field , and and are injective sequences (they contain distinct elements).

Properties

edit

Every submatrix of a Cauchy matrix is itself a Cauchy matrix.

The Hilbert matrix is a special case of the Cauchy matrix, where

 

Cauchy determinants

edit

The determinant of a Cauchy matrix is clearly a rational fraction in the parameters   and  . If the sequences were not injective, the determinant would vanish, and tends to infinity if some   tends to  . A subset of its zeros and poles are thus known. The fact is that there are no more zeros and poles:

The determinant of a square Cauchy matrix A is known as a Cauchy determinant and can be given explicitly as

  (Schechter 1959, eqn 4; Cauchy 1841, p. 154, eqn. 10).

It is always nonzero, and thus all square Cauchy matrices are invertible. The inverse A−1 = B = [bij] is given by

  (Schechter 1959, Theorem 1)

where Ai(x) and Bi(x) are the Lagrange polynomials for   and  , respectively. That is,

 

with

 

Generalization

edit

A matrix C is called Cauchy-like if it is of the form

 

Defining X=diag(xi), Y=diag(yi), one sees that both Cauchy and Cauchy-like matrices satisfy the displacement equation

 

(with   for the Cauchy one). Hence Cauchy-like matrices have a common displacement structure, which can be exploited while working with the matrix. For example, there are known algorithms in literature for

  • approximate Cauchy matrix-vector multiplication with   ops (e.g. the fast multipole method),
  • (pivoted) LU factorization with   ops (GKO algorithm), and thus linear system solving,
  • approximated or unstable algorithms for linear system solving in  .

Here   denotes the size of the matrix (one usually deals with square matrices, though all algorithms can be easily generalized to rectangular matrices).

See also

edit

References

edit
  • Cauchy, Augustin-Louis (1841). Exercices d'analyse et de physique mathématique. Vol. 2 (in French). Bachelier.
  • Gerasoulis, A. (1988). "A fast algorithm for the multiplication of generalized Hilbert matrices with vectors" (PDF). Mathematics of Computation. 50 (181): 179–188. doi:10.2307/2007921. JSTOR 2007921.179-188&rft.date=1988&rft_id=info:doi/10.2307/2007921&rft_id=https://www.jstor.org/stable/2007921#id-name=JSTOR&rft.aulast=Gerasoulis&rft.aufirst=A.&rft_id=https://www.ams.org/journals/mcom/1988-50-181/S0025-5718-1988-0917825-9/S0025-5718-1988-0917825-9.pdf&rfr_id=info:sid/en.wikipedia.org:Cauchy matrix" class="Z3988">
  • Gohberg, I.; Kailath, T.; Olshevsky, V. (1995). "Fast Gaussian elimination with partial pivoting for matrices with displacement structure" (PDF). Mathematics of Computation. 64 (212): 1557–76. Bibcode:1995MaCom..64.1557G. doi:10.1090/s0025-5718-1995-1312096-x.1557-76&rft.date=1995&rft_id=info:doi/10.1090/s0025-5718-1995-1312096-x&rft_id=info:bibcode/1995MaCom..64.1557G&rft.aulast=Gohberg&rft.aufirst=I.&rft.au=Kailath, T.&rft.au=Olshevsky, V.&rft_id=https://www.ams.org/journals/mcom/1995-64-212/S0025-5718-1995-1312096-X/S0025-5718-1995-1312096-X.pdf&rfr_id=info:sid/en.wikipedia.org:Cauchy matrix" class="Z3988">
  • Martinsson, P.G.; Tygert, M.; Rokhlin, V. (2005). "An   algorithm for the inversion of general Toeplitz matrices" (PDF). Computers & Mathematics with Applications. 50 (5–6): 741–752. doi:10.1016/j.camwa.2005.03.011.5–6&rft.pages=741-752&rft.date=2005&rft_id=info:doi/10.1016/j.camwa.2005.03.011&rft.aulast=Martinsson&rft.aufirst=P.G.&rft.au=Tygert, M.&rft.au=Rokhlin, V.&rft_id=http://amath.colorado.edu/faculty/martinss/Pubs/2004_toeplitz.pdf&rfr_id=info:sid/en.wikipedia.org:Cauchy matrix" class="Z3988">
  • Schechter, S. (1959). "On the inversion of certain matrices" (PDF). Mathematical Tables and Other Aids to Computation. 13 (66): 73–77. doi:10.2307/2001955. JSTOR 2001955.73-77&rft.date=1959&rft_id=info:doi/10.2307/2001955&rft_id=https://www.jstor.org/stable/2001955#id-name=JSTOR&rft.aulast=Schechter&rft.aufirst=S.&rft_id=https://www.ams.org/journals/mcom/1959-13-066/S0025-5718-1959-0105798-2/S0025-5718-1959-0105798-2.pdf&rfr_id=info:sid/en.wikipedia.org:Cauchy matrix" class="Z3988">
  • Finck, TiIo; Heinig, Georg; Rost, Karla (1993). "An Inversion Formula and Fast Algorithms for Cauchy-Vandermonde Matrices" (PDF). Linear Algebra and Its Applications. 183 (1): 179–191. doi:10.1016/0024-3795(93)90431-M.179-191&rft.date=1993&rft_id=info:doi/10.1016/0024-3795(93)90431-M&rft.aulast=Finck&rft.aufirst=TiIo&rft.au=Heinig, Georg&rft.au=Rost, Karla&rft_id=https://core.ac.uk/download/pdf/82274904.pdf&rfr_id=info:sid/en.wikipedia.org:Cauchy matrix" class="Z3988">
  • Fasino, Dario (2023). "Orthogonal Cauchy-like matrices" (PDF). Numerical Algorithms. 92 (1): 619–637. doi:10.1007/s11075-022-01391-y.619-637&rft.date=2023&rft_id=info:doi/10.1007/s11075-022-01391-y&rft.aulast=Fasino&rft.aufirst=Dario&rft_id=https://air.uniud.it/retrieve/c67019bf-7547-437f-8332-354fce4a4f94/s11075-022-01391-y.pdf&rfr_id=info:sid/en.wikipedia.org:Cauchy matrix" class="Z3988">.