In mathematics, the Carleson–Jacobs theorem, introduced by L. Carleson and S. Jacobs (1972), describes the best approximation to a continuous function on the unit circle by a function in a Hardy space.[1]
Notes
edit- ^ Garnett 1981, p. 139.
References
edit- Carleson, Lennart; Jacobs, Sigvard (1972), "Best uniform approximation by analytic functions", Arkiv för Matematik, 10 (1–2): 219–229, Bibcode:1972ArM....10..219C, doi:10.1007/BF02384810, ISSN 0004-2080, MR 03224101–2&rft.pages=219-229&rft.date=1972&rft_id=info:doi/10.1007/BF02384810&rft_id=https://mathscinet.ams.org/mathscinet-getitem?mr=0322410#id-name=MR&rft.issn=0004-2080&rft_id=info:bibcode/1972ArM....10..219C&rft.aulast=Carleson&rft.aufirst=Lennart&rft.au=Jacobs, Sigvard&rfr_id=info:sid/en.wikipedia.org:Carleson–Jacobs theorem" class="Z3988">
- Garnett, John B. (1981). Bounded analytic functions. Academic Press. ISBN 0-12-276150-2. MR 0068971.